神奇的荧光蛋白打造五光十色的动物世界转 mcherry荧光蛋白

来源: 网易探索(广州)

从下面的8张图片,我们将看到绿色荧光蛋白质在科学研究和艺术领域发挥作用的美丽而令人惊讶的例子:



含有荧光蛋白的水母



GFP可以形成自己的发色团,它非常适合于基因工程



具有荧光蛋白的昆虫



随着病毒在宿主体内不断扩散,你就可以通过跟踪发出的绿光来观察病毒的扩散途径;或者你把它接合到一种蛋白质上并通过显微镜观察它在细胞内部的移动



1997年7月日本大阪大学的科研人员首次培育出能够夜里发光的含有绿色荧光蛋白的老鼠


神奇的荧光蛋白打造五光十色的动物世界(转) mcherry荧光蛋白

拥有绿色荧光蛋白的蜜蜂



科学使用绿色荧光蛋白跟踪大脑细胞的活动



含有绿色荧光蛋白的兔子

网易探索讯据《每日科学》网站报道,瑞典皇家科学院把今年的诺贝尔化学奖授予了美国加州大学圣迭戈分校生物化学及化学系教授、美国国家科学院院士钱永健,美国哥伦比亚大学生物学教授马丁·沙尔菲,日本有机化学家兼海洋生物学家下村修,以表彰三人作为绿色荧光蛋白的发现者和推广者,所取得的科学成就。

绿色荧光蛋白(GFP)(蛋白质编号1gfl),是从一种生活在北太平洋寒冷水域的水母体内发现的。这种水母体内含有一种生物发光蛋白质——aequorin,它本身发蓝光。GFP能把这种光转变成绿色,也就是当水母容光焕发的时候我们实际看到的颜色。GFP的纯溶液在典型的室光下呈黄色,但是当被拿到户外的阳光下时,它会发出鲜绿的颜色。这种蛋白质从阳光中吸收紫外光,然后以能量较低的绿光形式发射出来。绿色荧光蛋白质可以帮助科学家了解细胞如何工作,这种神奇的蛋白质是当代生物化学研究的最为重要的工具之一。利用绿色荧光蛋白,研究人员可以使用多种技术来跟踪动物器官的工作机理。可以跟踪癌细胞和大脑细胞的组织活动。这些都给人类带来了不可估量的作用,为人类解决医学难题提供了宝贵的信息。因为它能够使我们直接看到细胞内部的运动情况。你只需要用紫外光去照射,这时所有的GFP都将发出鲜艳的绿色。比如,你可以把它连接到一种病毒上。然后,随着病毒在宿主体内不断扩散,你就可以通过跟踪发出的绿光来观察病毒的扩散途径;或者你把它接合到一种蛋白质上并通过显微镜观察它在细胞内部的移动。因此康涅狄格学院化学家、《发光基因》作者马克·齐默(Mark Zimmer)将绿色荧光蛋白质称之为“21世纪的显微镜”。科学家称,在生物的器官中,有数以千万记的不同种类的蛋白质。如果这些蛋白质一旦出现“故障”,那么疾病就会随之而来。所以,标明不同种类蛋白质的特殊功能,对于生物科学来说,是十分重要的。使用荧光蛋白,人们可以观察蛋白质的运动过程,和活动情况以及被跟踪的蛋白质之间的化学作用。

首先发现绿色荧光蛋白的是生于1928年的日本有机化学家兼海洋生物学家下村修。下村修现年80岁,出生于日本京都府,1960年获得名古屋大学理学博士学位,曾先后在美国普林斯顿大学、波士顿大学和伍兹霍尔海洋生物实验所工作。钱永健是绿色荧光蛋白发展历程中最为关键的的缔造者,他在下村修与沙尔菲研究的基础上进一步搞清楚了绿色荧光蛋白特性。他改造绿色荧光蛋白,通过改变其氨基酸排序,造出能吸收、发出不同颜色光的荧光蛋白,其中包括蓝色、青色和黄色,并让它们发光更久、更强烈。世界上目前使用的荧光蛋白大多是钱永健实验室改造后的变种。钱永健1952年生于纽约,现为美国加州大学圣迭戈分校生物化学及化学系教授、美国国家科学院院士、国家医学院院士,2004年沃尔夫奖医学奖得主。主要贡献是利用水母发出绿光的化学物来追查实验室内进行的生物反应,他被认为是这方面的先驱。

在生物的活体器官中,有数以千万记不同种类的蛋白质。这些蛋白质控制着器官中每一瞬间发生的任何化学反应。所以,标明不同种类蛋白质的特殊功能,对于生物科学来说,是十分重要的。虽然蛋白质本身发光,但是下村修和约翰森的研究表明,从水母中提取的发光蛋白质可以作为一种激化制剂。1962年,下村修和约翰森等在《细胞和比较生理学杂志》上报道,他们分离纯化了水母中发光蛋白水母素。1963年,他们在《科学》杂志报道钙和水母素发光的关系。其后两位来自美国的科学家发现钙离子是生物体内的重要信号分子。于是,科研人员根据下村修和约翰森发现的水母素的原理,使得水母素成为第一个有空间分辨能力的钙检测方法,这是目前仍用的方法之一。1955年达文波特和尼克尔发现水母可以发绿光,但不知其因。在1962年下村修和约翰森在那篇纯化水母素的文章中,有个注脚,说还发现了另一种蛋白,它在阳光下呈绿色、钨丝下呈黄色、紫外光下发强烈绿色。其后他们仔细研究了其发光特性。1974年,他们纯化到了这个蛋白,当时称绿色蛋白、以后称绿色荧光蛋白GFP。Morin和Hastings提出水母素和GFP之间可以发生能量转移。水母素在钙刺激下发光,其能量可转移到GFP,刺激GFP发光。这是物理化学中知道的荧光共振能量转移(FRET在生物中的发现。1992年,普腊石拿到了GFP的基因,使得研究者的应用更加方便。

GFP是一种现成的荧光蛋白质,因此它特别容易使用。大多数可以处理光的蛋白质都利用外来的分子吸收和释放光子。例如,我们的眼睛就是利用维生素来感光。不同的是,GFP控制光的部位是其自身的一部分,仅由氨基酸构建而成,该部位含有一段三个氨基酸组成的特殊序列:丝氨酸-酪氨酸-甘氨酸(有时丝氨酸会被相似的苏氨酸取代)。当蛋白质链折叠时,这段短片段就被深埋在蛋白质内部,然后,发生一系列化学反应:甘氨酸与丝氨酸之间形成化学键,生成一个新的闭合环,随后这个环会自动脱水。最终,经过大约一个小时的反应,周围环境中的的氧气攻击酪氨酸的一个化学键,形成一个新的双键并合成荧光发色团。由于GFP可以形成自己的发色团,它非常适合于基因工程。你根本不必担心操作任何奇怪的发色团,你只需要利用遗传学的方法操纵细胞合成GFP蛋白质,GFP就会自动折叠并开始发光。

目前,GFP的用途已经扩展到艺术和商务领域,艺术家通过把GFP插入兔子细胞内创造出了一只荧光的绿色兔子。育种工作者正在探索利用GFP来创造特殊的荧光植物和各种鱼类,GFP已经被移植到大鼠、老鼠、青蛙、有翅昆虫、蠕虫以及不计其数的其它生物体内。当然这些转基因植物和动物还存在一些争议,并且已经引发了关于基因工程安全性和伦理性的重要对话。 (翻译:普莱)

作者:榆木悟道神奇的荧光蛋白打造五光十色的动物世界(转)

来源: 网易探索(广州)

从下面的8张图片,我们将看到绿色荧光蛋白质在科学研究和艺术领域发挥作用的美丽而令人惊讶的例子:



含有荧光蛋白的水母



GFP可以形成自己的发色团,它非常适合于基因工程



具有荧光蛋白的昆虫



随着病毒在宿主体内不断扩散,你就可以通过跟踪发出的绿光来观察病毒的扩散途径;或者你把它接合到一种蛋白质上并通过显微镜观察它在细胞内部的移动



1997年7月日本大阪大学的科研人员首次培育出能够夜里发光的含有绿色荧光蛋白的老鼠



拥有绿色荧光蛋白的蜜蜂



科学使用绿色荧光蛋白跟踪大脑细胞的活动



含有绿色荧光蛋白的兔子

网易探索讯据《每日科学》网站报道,瑞典皇家科学院把今年的诺贝尔化学奖授予了美国加州大学圣迭戈分校生物化学及化学系教授、美国国家科学院院士钱永健,美国哥伦比亚大学生物学教授马丁·沙尔菲,日本有机化学家兼海洋生物学家下村修,以表彰三人作为绿色荧光蛋白的发现者和推广者,所取得的科学成就。

绿色荧光蛋白(GFP)(蛋白质编号1gfl),是从一种生活在北太平洋寒冷水域的水母体内发现的。这种水母体内含有一种生物发光蛋白质——aequorin,它本身发蓝光。GFP能把这种光转变成绿色,也就是当水母容光焕发的时候我们实际看到的颜色。GFP的纯溶液在典型的室光下呈黄色,但是当被拿到户外的阳光下时,它会发出鲜绿的颜色。这种蛋白质从阳光中吸收紫外光,然后以能量较低的绿光形式发射出来。绿色荧光蛋白质可以帮助科学家了解细胞如何工作,这种神奇的蛋白质是当代生物化学研究的最为重要的工具之一。利用绿色荧光蛋白,研究人员可以使用多种技术来跟踪动物器官的工作机理。可以跟踪癌细胞和大脑细胞的组织活动。这些都给人类带来了不可估量的作用,为人类解决医学难题提供了宝贵的信息。因为它能够使我们直接看到细胞内部的运动情况。你只需要用紫外光去照射,这时所有的GFP都将发出鲜艳的绿色。比如,你可以把它连接到一种病毒上。然后,随着病毒在宿主体内不断扩散,你就可以通过跟踪发出的绿光来观察病毒的扩散途径;或者你把它接合到一种蛋白质上并通过显微镜观察它在细胞内部的移动。因此康涅狄格学院化学家、《发光基因》作者马克·齐默(Mark Zimmer)将绿色荧光蛋白质称之为“21世纪的显微镜”。科学家称,在生物的器官中,有数以千万记的不同种类的蛋白质。如果这些蛋白质一旦出现“故障”,那么疾病就会随之而来。所以,标明不同种类蛋白质的特殊功能,对于生物科学来说,是十分重要的。使用荧光蛋白,人们可以观察蛋白质的运动过程,和活动情况以及被跟踪的蛋白质之间的化学作用。

首先发现绿色荧光蛋白的是生于1928年的日本有机化学家兼海洋生物学家下村修。下村修现年80岁,出生于日本京都府,1960年获得名古屋大学理学博士学位,曾先后在美国普林斯顿大学、波士顿大学和伍兹霍尔海洋生物实验所工作。钱永健是绿色荧光蛋白发展历程中最为关键的的缔造者,他在下村修与沙尔菲研究的基础上进一步搞清楚了绿色荧光蛋白特性。他改造绿色荧光蛋白,通过改变其氨基酸排序,造出能吸收、发出不同颜色光的荧光蛋白,其中包括蓝色、青色和黄色,并让它们发光更久、更强烈。世界上目前使用的荧光蛋白大多是钱永健实验室改造后的变种。钱永健1952年生于纽约,现为美国加州大学圣迭戈分校生物化学及化学系教授、美国国家科学院院士、国家医学院院士,2004年沃尔夫奖医学奖得主。主要贡献是利用水母发出绿光的化学物来追查实验室内进行的生物反应,他被认为是这方面的先驱。

在生物的活体器官中,有数以千万记不同种类的蛋白质。这些蛋白质控制着器官中每一瞬间发生的任何化学反应。所以,标明不同种类蛋白质的特殊功能,对于生物科学来说,是十分重要的。虽然蛋白质本身发光,但是下村修和约翰森的研究表明,从水母中提取的发光蛋白质可以作为一种激化制剂。1962年,下村修和约翰森等在《细胞和比较生理学杂志》上报道,他们分离纯化了水母中发光蛋白水母素。1963年,他们在《科学》杂志报道钙和水母素发光的关系。其后两位来自美国的科学家发现钙离子是生物体内的重要信号分子。于是,科研人员根据下村修和约翰森发现的水母素的原理,使得水母素成为第一个有空间分辨能力的钙检测方法,这是目前仍用的方法之一。1955年达文波特和尼克尔发现水母可以发绿光,但不知其因。在1962年下村修和约翰森在那篇纯化水母素的文章中,有个注脚,说还发现了另一种蛋白,它在阳光下呈绿色、钨丝下呈黄色、紫外光下发强烈绿色。其后他们仔细研究了其发光特性。1974年,他们纯化到了这个蛋白,当时称绿色蛋白、以后称绿色荧光蛋白GFP。Morin和Hastings提出水母素和GFP之间可以发生能量转移。水母素在钙刺激下发光,其能量可转移到GFP,刺激GFP发光。这是物理化学中知道的荧光共振能量转移(FRET在生物中的发现。1992年,普腊石拿到了GFP的基因,使得研究者的应用更加方便。

GFP是一种现成的荧光蛋白质,因此它特别容易使用。大多数可以处理光的蛋白质都利用外来的分子吸收和释放光子。例如,我们的眼睛就是利用维生素来感光。不同的是,GFP控制光的部位是其自身的一部分,仅由氨基酸构建而成,该部位含有一段三个氨基酸组成的特殊序列:丝氨酸-酪氨酸-甘氨酸(有时丝氨酸会被相似的苏氨酸取代)。当蛋白质链折叠时,这段短片段就被深埋在蛋白质内部,然后,发生一系列化学反应:甘氨酸与丝氨酸之间形成化学键,生成一个新的闭合环,随后这个环会自动脱水。最终,经过大约一个小时的反应,周围环境中的的氧气攻击酪氨酸的一个化学键,形成一个新的双键并合成荧光发色团。由于GFP可以形成自己的发色团,它非常适合于基因工程。你根本不必担心操作任何奇怪的发色团,你只需要利用遗传学的方法操纵细胞合成GFP蛋白质,GFP就会自动折叠并开始发光。

目前,GFP的用途已经扩展到艺术和商务领域,艺术家通过把GFP插入兔子细胞内创造出了一只荧光的绿色兔子。育种工作者正在探索利用GFP来创造特殊的荧光植物和各种鱼类,GFP已经被移植到大鼠、老鼠、青蛙、有翅昆虫、蠕虫以及不计其数的其它生物体内。当然这些转基因植物和动物还存在一些争议,并且已经引发了关于基因工程安全性和伦理性的重要对话。 (翻译:普莱)

绿色荧光蛋白

2008年10月8日,瑞典皇家科学院把今年的诺贝尔化学奖授予了美国加州大学圣迭戈分校生物化学及化学系教授、美国国家科学院院士钱学森堂侄钱永健,美国哥伦比亚大学生物学教授马丁·沙尔菲,日本有机化学家兼海洋生物学家下村修,以表彰三人作为绿色荧光蛋白的发现者和推广者所取得的科学成就。

绿色荧光蛋白

绿色萤光蛋白(green fluorescent protein),简称GFP,这种蛋白质最早是由下村脩等人在1962年在一种学名Aequorea victoria的水母中发现。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光。这个发光的过程中还需要冷光蛋白质Aequorin的帮助,且这个冷光蛋白质与钙离子(Ca+2)可产生交互作用。

由水母Aequorea victoria中发现的野生型绿色萤光蛋白,395nm和475nm分别是最大和次大的激发波长,它的发射波长的峰点是在509nm,在可见光绿光的范围下是较弱的位置。由海肾(sea pansy)所得的绿色萤光蛋白,仅有在498nm有一个较高的激发峰点。

在细胞生物学与分子生物学领域中,绿色萤光蛋白基因常被用作为一个报导基因(reporter gene)。一些经修饰过的型式可作为生物探针,绿色萤光蛋白基因也可以克隆到脊椎动物(例如:兔子上进行表现,并拿来映证某种假设的实验方法。

GFP的性质

GFP荧光极其稳定,在激发光照射下,GFP抗光漂白(Photobleaching)能力比荧光素(fluorescein)强,特别在450~490nm蓝光波长下更稳定。

GFP需要在氧化状态下产生荧光,强还原剂能使GFP转变为非荧光形式,但一旦重新暴露在空气或氧气中,GFP荧光便立即得到恢复。而一些弱还原剂并不影响GFP荧光。中度氧化剂对GFP荧光影响也不大,如生物材料的固定、脱水剂戊二酸或甲醛等。

GFP融合蛋白的荧光灵敏度远比荧光素标记的荧光抗体高,抗光漂白能力强,因此更适用于定量测定与分析。但因为GFP不是酶,荧光信号没有酶学放大效果,因此GFP灵敏度可能低于某些酶类报告蛋白。

由于GFP荧光是生物细胞的自主功能,荧光的产生不需要任何外源反应底物,因此GFP作为一种广泛应用的活体报告蛋白,其作用是任何其它酶类报告蛋白无法比拟的。

GFP在肿瘤发病机制研究中的应用

GFP 是一个分子量较小的蛋白,易与其他一些目的基因形成融合蛋白且不影响自身的目的基因产物的空间构象和功能。GFP 与目的基因融合,将目的基因标记为绿色,即可定量分析目的基因的表达水平,显示其在肿瘤细胞内的表达位置和量的变化,为探讨该基因在肿瘤发生、发展中的作用及其分子机制提供便利条件。

在肿瘤的形成过程中,增殖和凋亡是一对相互矛盾的统一体。若肿瘤细胞凋亡占优势,肿瘤组织将长期处于休眠状态或自行消亡。肿瘤细胞的凋亡受凋亡相关基因调控。用GFP转染肿瘤细胞凋亡相关基因,并与正常组织进行比较,则大致可判断此基因为抑制肿瘤细胞凋亡的基因;反之,为促进肿瘤细胞凋亡的基因。

肿瘤细胞浸润是肿瘤细胞粘连、酶降解、移动和基质内增殖等一系列过程的表现,其根本原因在于肿瘤细胞内某些基因表达异常。利用GFP 的示踪特性,研究肿瘤细胞内某些基因异常表达与肿瘤细胞浸润的关系,即可揭示肿瘤细胞浸润的某些机制。

1994年,华裔美国科学家钱永健(Roger Y Tsien)开始改造GFP,有多项发现。世界上用的大多数是钱永健实验室改造后的变种,有的荧光更强,有的黄色、蓝色,有的可激活、可变色。到一些不常用做研究模式的生物体内找有颜色的蛋白成为一些人的爱好,现象正如当年在嗜热生物中找到以后应用广泛的PCR用多聚酶后的一波浪潮。不过真发现的有用东西并不很多。成功的例子有俄国科学院生物有机化学研究所Sergey A. Lukyanov实验室从珊瑚里发现其他荧光蛋白,包括红色荧光蛋白。

生物发光现象,下村修和约翰森以前就有人研究。萤火虫发荧光,是由荧光酶(luciferase)作为酶催化底物分子荧光素(luciferin),有化学反应如氧化,以后产生荧光。而蛋白质本身发光,无需底物,起源是下村修和约翰森的研究。

下村修和约翰森用过几种实验动物,和本故事相关的是学名为Aequorea victoria的水母。1962年,下村修和约翰森等在《细胞和比较生理学杂志》上报道,他们分离纯化了水母中发光蛋白水母素。据说下村修用水母提取发光蛋白时,有天下班要回家了,他把产物倒进水池里,临出门前关灯后,依依不舍地回头看了一眼水池,结果见水池闪闪发光。因为水池也接受养鱼缸的水,他怀疑是鱼缸成分影响水母素,不久他就确定钙离子增强水母素发光。1963年,他们在《科学》杂志报道钙和水母素发光的关系。其后Ridgway和Ashley 提出可以用水母素来检测钙浓度,创造了检测钙的新方法。钙离子是生物体内的重要信号分子,水母素成为第一个有空间分辨能力的钙检测方法,是目前仍用的方法之一。

1955年Davenport和Nicol发现水母可以发绿光,但不知其因。在1962 年下村修和约翰森在那篇纯化水母素的文章中,有个注脚,说还发现了另一种蛋白,它在阳光下呈绿色、钨丝下呈黄色、紫外光下发强烈绿色。其后他们仔细研究了其发光特性。1974年,他们纯化到了这个蛋白,当时称绿色蛋白、以后称绿色荧光蛋白GFP。Morin和Hastings提出水母素和GFP之间可以发生能量转移。水母素在钙刺激下发光,其能量可转移到GFP,刺激GFP发光。这是物理化学中知道的荧光共振能量转移(FRET)在生物中的发现。

下村修本人对GFP的应用前景不感兴趣,也没有意识到应用的重要性。他离开普林斯顿到 Woods Hole海洋研究所后,同事普腊石(Douglas Prasher)非常感兴趣发明生物示踪分子。1985年普腊石和日裔科学家Satoshi Inouye独立根据蛋白质顺序拿到了水母素的基因(准确地说是cDNA)。1992年,普腊石拿到了GFP的基因。有了cDNA,一般生物学研究者就很好应用,比用蛋白质方便多了。

普腊石1992年发表GFP的cDNA后,不做科学研究了。他申请美国国家科学基金时,评审者说没有蛋白质发光的先例,就是他找到了,也没什么价值。一气之下,他离开学术界去麻省空军国民卫队基地,给农业部动植物服务部工作。当时他如果花几美元,就可以做一个一般研究生都能做,但是非常漂亮的工作:将水母的GFP基因放到其他生物体内,比如细菌里,看到荧光,就完全证明GFP本身可以发光,无需其它底物或者辅助分子。

将GFP表达到其它生物体这项工作,1994年由两个实验室独立进行:美国哥伦比亚大学做线虫的Marty Chalfie实验室,和加州大学圣迭哥分校、Scripps海洋研究所的两位日裔科学家Inouye和Tsuji。

水母素和GFP都有重要的应用。但水母素仍是荧光酶的一种,它需要荧光素。而GFP蛋白质本身发光,在原理上有重大突破。

Chalfie的文章立即引起轰动,很多生物学研究者纷纷将GFP引入自己的系统。在一个新系统表达GFP就能在《自然》、《科学》上发表文章,其实不过是跟风性质,没有原创性。

纵观整个过程,从1961年到1974年,下村修和约翰森的研究遥遥领先,而很少人注意。如果其他生化学家愿意,他们也可以得到水母素和GFP,技术并不特别难。在1974年以后,特别是八十年代后,后继的工作,很多研究生都很容易做。其中例外是钱永健实验室发现变种出现新颜色,并非显而易见。

首先发现绿色荧光蛋白的是生于1928年的下村修。下村修现年80岁,出生于日本京都府,1960年获得名古屋大学理学博士学位,曾先后在美国普林斯顿大学、波士顿大学和伍兹霍尔海洋生物实验所工作。他1962年从一种水母中发现了荧光蛋白,被誉为生物发光研究第一人。他1962年从生活在美国西海岸近海的一种水母身上分离出了绿色荧光蛋白。

钱永健走出的可说是绿色荧光蛋白开发历程的“最后一步”,他在下村修与沙尔菲研究的基础上进一步搞清楚了绿色荧光蛋白特性。他改造绿色荧光蛋白,通过改变其氨基酸排序,造出能吸收、发出不同颜色光的荧光蛋白,其中包括蓝色、青色和黄色,并让它们发光更久、更强烈。世界上目前使用的荧光蛋白大多是钱永健实验室改造后的变种。钱永健1952年生于纽约,现为美国加州大学圣迭戈分校生物化学及化学系教授、美国国家科学院院士、国家医学院院士,2004年沃尔夫奖医学奖得主。主要贡献是利用水母发出绿光的化学物来追查实验室内进行的生物反应,他被认为是这方面的先驱。

马丁·查尔菲1947年出生,在芝加哥长大,他1977年获得哈佛大学神经生物学博士学位,他自1982年以来任哥伦比亚大学生物学教授。他获奖的主要贡献在于向人们展示了绿色荧光蛋白作为发光的遗传标签的作用。

附:

中国首例绿色荧光蛋白转基因克隆猪问世

曾培育出我国首例成体体细胞「克隆」东北民猪的东北农业大学教授刘忠华带领的课题组,2006年12月22日又成功培育出国内首例绿色荧光蛋白「转基因」克隆猪,这是世界上继美国、韩国、日本之后第四例绿色荧光蛋白转基因猪(见图)。



据悉,此次获得的转基因克隆猪,是研究人员先从一种特殊水母中提取绿色荧光蛋白基因,然后把该基因经过处理后转移到培养的猪胎儿成纤维细胞的基因组中,再把转基因体细胞的细胞核移植到成熟的去核猪卵母细胞中构建成转基因胚胎。转基因胚胎经过手术移植入受体母猪,经过114天的发育,最终获得绿色荧光蛋白转基因克隆猪。

绿色荧光蛋白基因是一种标记基因,该基因表达后产生的绿色荧光蛋白在紫外光的激发下可发出明亮的绿光,便于直观鉴定。绿色荧光蛋白转基因猪具有非常广泛的基础研究价值,例如提取绿色荧光蛋白转基因猪的骨髓、血液及其它不同组织样本并分离出其中的成体干细胞(也表达绿色荧光蛋白),就可以将此作为干细胞分化、增殖以及修补等再生医学研究结果的标示物。

东北农业大学副校长、畜牧专家包军介绍,绿色荧光蛋白转基因猪的出生,标志着我国在转基因克隆猪技术研究领域步入世界先进水平行列。这项技术为家猪的目标育种、人类疾病医疗模型猪的建立以及生产为人类器官移植提供器官的特殊家猪提供了可靠技术平台,从而为畜牧业发展和医学研究开辟了新的天地。

目前,在哈尔滨三元畜产实业有限公司种猪场还有2头怀有转基因胎儿的母猪待产,产期预计在2007年1月中旬。待产的母猪被植入的是抑肌基因,也就是去除了抑制肌肉生长的基因,让猪的肌肉生长不受抑制,可大大提高猪肉的生长速度,提高养殖的生产效率。

  

爱华网本文地址 » http://www.aihuau.com/a/25101011/94255.html

更多阅读

教你神奇的太空步滑步 亲身体验 异性spa亲身体验述说

本文是介绍如何学习太空舞步的,在这我将向大家介绍如何学习和练习太空舞步。太空舞步重在练习,对于小腿肌肉有要求,初学者在光滑的地面练习教容易掌握,开始教程教你神奇的太空步(滑步)(亲身体验)——步骤/方法教你神奇的太空步(滑步)(亲身体验)

南非货币上的动物世界 南非使用什么货币

如果有喜欢动物专题收藏的钱币爱好者,一定不能错过南非这套纸币。相对于大多数国家的纸钞,南非在1990年代之后,决定了纸币上的主角,不再以名人为主题,更不是以名胜古迹为傲,而是选择了境内的野生动物为主角,这让他们的纸钞更增添了非洲大陆

赵忠祥的动物世界 赵忠祥动物世界之藏獒

最近突然一下冒出了很多有关于赵忠祥的消息,这个年近古稀的老人,真是有非凡的本事,又把大家的注意力重新聚集到了他身上,出书、回复饶颖事件、武林大会飚太空舞步。。。真是赚足了大众的眼球,前段时间,在赵忠祥出书之前,偶然看了鲁豫对他的

世界上最罕见的动物 世界上最罕见的水果

世界上最罕见的动物皇绢毛猴  皇绢毛猴这种灵长类动物的得名,是因为胡子酷似德国君主威廉二世。虽然名字来源于一个笑话,不过还是变成了官方名称。  这种绢毛猴在西南亚马逊盆地、东秘鲁、玻利维亚北部和巴西西部的阿克里及亚马

神 奇 的 姜 黄 神奇的姜茶

神奇的姜黄(一)【医药界成就与发现】姜黄是什么?在中西医药一片回归草本风潮中,姜黄是一种受到现代医学及传统医学的双方支持;且具有完整药效,完全无副作用的“药食两用”物品。中国人历来用它养命、养性和治病。1988年,Huang及Conney等人

声明:《神奇的荧光蛋白打造五光十色的动物世界转 mcherry荧光蛋白》为网友苦巷深桥分享!如侵犯到您的合法权益请联系我们删除