gaizhouqi weifen fangcheng
概周期微分方程
almost periodic differential equation
其右端函数对自变量是概周期函数的微分方程;即在方程
[260-10] (1)中,(,)是的概周期函数。这里是维向量,(,)是维向量函数。概周期微分方程的发展历史不长,但由于它具有实际背景(如天体力学和非线性振动的问题)而显示出生命力。特别是,1945年,A.H.柯尔莫哥洛夫利用无理性条件,指出哈密顿系统具有拟周期解。1963年,..阿诺尔德又给出严格证明,由此证明了太阳系不稳定的概率为零,解决了平面限制性三体问题的稳定性问题,从而使P.-S.拉普拉斯提出的已历时二百年的太阳系稳定性问题有了重大的突破。这样,概周期微分方程就更显出它的重要性。
对概周期方程(也称概周期系统)(1),主要是讨论其概周期解的存在性和稳定性。线性微分方程是微分方程论的基础,因此概周期线性微分方程的结构以及概周期解的摄动理论也是概周期系统的重要课题。
线性系统 法瓦尔性质 对概周期线性系统
[261-1], (2)式中()是×概周期方阵;()是维概周期向量函数,定义()的外壳为
[261-2]。 法瓦尔提出这样的条件:对于(2)的齐次外壳方程系
[261-3] (3)的任一非显易的有界解(),总满足关系式
[261-4], 称这条件为法瓦尔性质。这性质是从常系数线性系统或周期性线性系统总结出来的。法瓦尔指出,在这个条件下,(2)的有界解的存在性含有概周期解的存在性。
弗洛奎特理论 周期线性系统可以通过正则、线性、周期的变换化为常系数线性系统。通常称这种关系为弗洛奎特理论。人们希望这种性质可以推广到概周期线性系统或拟周期线性系统。G.R.塞尔指出,弗洛奎特理论不能推广到概周期线性系统(1974)。
指数型二分性 从第一近似观点出发,在原点附近的非线性系统
[261-5] (4)(式中的特征根的实部不为零),与它的线性部分[261-6] 有相同的拓扑结构,原因在于后者具有指数型二分性。对于线性部分为变系数的非线性系统
[261-7], (5)当它的线性部分
[261-8] (6)是概周期系统且其特征指数不为零时,R.J.萨克和塞尔研究了()和其外壳(())的性质,得到(6)具有指数二分性的条件(1974、1976)。
非线性系统 对概周期系统 (1)的概周期解的求解,尚无统一的办法。Z.奥皮尔举出存在这样的系统(1),它的解均有界,但没有概周期解(1961)。A.M.芬克和P.O.弗雷德里克桑构造了一个概周期系统,其每个解都是毕竟有界,但没有概周期解。由此可见,除了一切解有界以外,还必需附加一些条件,才能得到概周期解。在这方面G.塞费特、塞尔、米尔、J.卡托等人都提出了不同的附加条件。
以上就是网友分享的关于"概周期微分方程"的相关资料,希望对您有所帮助,感谢您对爱华网的支持!

爱华网



