高考数学常用结论 高考数学常用公式及结论203条(一)

高考数学常用公式及结论203条(一)

1. 元素与集合的关系

,.

2.德摩根公式

.

3.包含关系

4.容斥原理

.

    5.集合的子集个数共有 个;真子集有–1个;非空子集有 –1个;非空的真子集有–2个.

6.二次函数的解析式的三种形式

(1)一般式;

(2)顶点式;

(3)零点式.

7.解连不等式常有以下转化形式

.

8.方程在上有且只有一个实根,与不等价,前者是后者的一个必要而不是充分条件.特别地, 方程有且只有一个实根在内,等价于,或且,或且.

9.闭区间上的二次函数的最值

   二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:

(1)当a>0时,若,则;

,,.

(2)当a<0时,若,则,若,则,.

10.一元二次方程的实根分布

依据:若,则方程在区间内至少有一个实根 .

  设,则

(1)方程在区间内有根的充要条件为或;

(2)方程在区间内有根的充要条件为或或或;

(3)方程在区间内有根的充要条件为或 .

11.定区间上含参数的二次不等式恒成立的条件依据

(1)在给定区间的子区间(形如,,不同)上含参数的二次不等式(为参数)恒成立的充要条件是.

(2)在给定区间的子区间上含参数的二次不等式(为参数)恒成立的充要条件是.

(3)恒成立的充要条件是或.

12.真值表      

非p

p或q

p且q

   13.常见结论的否定形式

原结论

反设词

原结论

反设词

不是

至少有一个

一个也没有

都是

不都是

至多有一个

至少有两个

大于

不大于

至少有个

至多有()个

小于

不小于

至多有个

至少有()个

对所有,

成立

存在某,

不成立

 

 

对任何,

不成立

存在某,

成立

 

 

 

 

 

 

14.四种命题的相互关系


 

15.充要条件

   (1)充分条件:若,则是充分条件.

(2)必要条件:若,则是必要条件.

(3)充要条件:若,且,则是充要条件.

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.

16.函数的单调性

(1)设那么

上是增函数;

上是减函数.

(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.

17.如果函数和都是减函数,则在公共定义域内,和函数也是减函数; 如果函数和在其对应的定义域上都是减函数,则复合函数是增函数.

18.奇偶函数的图象特征

奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.

19.若函数是偶函数,则;若函数是偶函数,则.

20.对于函数(),恒成立,则函数的对称轴是函数;两个函数与 的图象关于直线对称.

21.若,则函数的图象关于点对称; 若,则函数为周期为的周期函数.

22.多项式函数的奇偶性

多项式函数是奇函数的偶次项(即奇数项)的系数全为零.

多项式函数是偶函数的奇次项(即偶数项)的系数全为零.

23.函数的图象的对称性

(1)函数的图象关于直线对称

.

(2)函数的图象关于直线对称

.

24.两个函数图象的对称性

(1)函数与函数的图象关于直线(即轴)对称.

(2)函数与函数的图象关于直线对称.

(3)函数和的图象关于直线y=x对称.

25.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.

26.互为反函数的两个函数的关系

.

27.若函数存在反函数,则其反函数为,并不是,而函数是的反函数.

28.几个常见的函数方程

    (1)正比例函数,.

(2)指数函数,.

(3)对数函数,.

(4)幂函数,.

(5)余弦函数,正弦函数,,

.

29.几个函数方程的周期(约定a>0)

(1),则的周期T=a;

(2),

或,

或,

或,则的周期T=2a;

(3),则的周期T=3a;

(4)且,则的周期T=4a;

(5)

,则的周期T=5a;

(6),则的周期T=6a.

30.分数指数幂

(1)(,且).

(2)(,且).

31.根式的性质

(1).

(2)当为奇数时,;

当为偶数时,.

32.有理指数幂的运算性质

(1)  .

(2) .

(3).

注:若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.

33.指数式与对数式的互化式

 .

34.对数的换底公式

 (,且,,且, ).

推论 (,且,,且,, ).

35.对数的四则运算法则

若a>0,a≠1,M>0,N>0,则

(1);

(2) ;

(3).

36.设函数,记.若的定义域为,则,且;若的值域为,则,且.对于的情形,需要单独检验.

37. 对数换底不等式及其推广

     若,,,,则函数

     (1)当时,在和上为增函数.

   (2)当时,在和上为减函数.

高考数学常用结论 高考数学常用公式及结论203条(一)

推论:设,,,且,则

(1).

(2).

38. 平均增长率的问题

如果原来产值的基础数为N,平均增长率为,则对于时间的总产值,有.

39.数列的同项公式与前n项的和的关系

( 数列的前n项的和为).

40.等差数列的通项公式

其前n项和公式为

.

     2011-09-05  人教网 下载: 关闭打印推荐给朋友  

爱华网本文地址 » http://www.aihuau.com/a/335251/650890957634.html

更多阅读

高考数学选择填空题的解题策略 高考完形填空解题技巧

解答选择题的基本策略是准确、迅速。准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制在

2010江苏高考数学卷真的难吗? 江苏2010高考数学惨案

在校内等各大论坛上,都看到江苏今年高考数学超级难,到底难道什么程度呢?很多往届的学生看了都说确实挺难的,不过,南通的媒体报道称学生认为这次数学难度平稳,《扬子晚报》却以南京学生为标准表示比较难,苏中地区的姜堰的高二学生也去做了

高中数学92个常用结论 高中数学常用公式及结论

? ??高中数学常用公式及结论。卓越教育网为大家整理了相关资料,以供参考。? ?中数学常用公式及结论:  (1) 一般式 ;  (2) 顶点式 ;(当已知抛物线的顶点坐标 时,设为此式)  (3) 零点式 ;(当已知抛物线与 轴的交点坐标为 时,设

轻轻松松搞定高考 如何轻松搞定高考数学填空题

&#160;  如何轻松搞定高考数学填空题  数学填空题只要求写出结果,不要求写出计算和推理过程,其结果必须是数值准确、形式规范、表达式(数)最简.填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题.解题时,要

声明:《高考数学常用结论 高考数学常用公式及结论203条(一)》为网友渲染人生分享!如侵犯到您的合法权益请联系我们删除