九年级数学教学工作总结
一学期的时光转瞬即逝,本学期的教学工作即将落下帷幕。一学期以来,我担任九年级的数学教学工作,在教学的各方面严格要求自己,坚持课堂“三不”(即课堂上不乱说话、不睡觉、不吃零食)来要求学生。为了明年的教学工作做得更好,做得更出色,为了能在以后的工作中更好的发挥自己的优势,及时总结经验,吸取教训,现将一学期的工作总结如下:
一、教育教学工作
教学工作是学校各项工作的中心,也是检验一个教师工作成败的关键。一学期以来,我在坚持抓好新课程理念学习和应用的同时,充分运用学校现有的教育教学资源,坚持备好每节课,上好每一堂课,各方面都取得了一定的效果。
1 、备课深入细致
平时认真研究教材,多方参阅各种资料,力求深入理解教材,准确把握难重点。在制定教学目的时,非常注意学生的实际情况。教案编写认真,并不断归纳总结经验教训。
2 、注重课堂教学效果
针对九年级学生特点,以愉快式教学为主,不搞满堂灌,坚持学生为主体,教师为主导、教学为主线,注重讲练结合。在教学中注意抓住重点,突破难点,做到讲解清晰化,准确化,条理化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主观能
动作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师尽量讲得少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。
3 、虚心请教其他老师
在教学上,有疑必问。在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听优秀老师的课,做到边听边讲,学习别人的优点,克服自己的不足,并常常邀请其他老师来听课,征求他们的意见,改进工作。坚持参加校内外教学研讨活动,不断汲取他人的宝贵经验,提高自己的教学水平。经常向经验丰富的教师请教并经常在一起讨论教学问题。
4 、作业与练习
在作业批改上,认真及时,力求做到全批全改,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结.,以便在辅导中做到有的放矢。
5、课后辅导
在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生的成绩。
二、工作中存在的问题
1、教材挖掘不深入。
2、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。
3、新课标下新的教学思想学习不深入。对学生的自主学习 , 合作学习 , 缺乏理论指导。
4、差生末抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数,导致了教学中的盲目性。
5、教学反思不够。
三、今后努力的方向
1、加强学习,学习新课标下新的教学思想。
2、学习新课标,挖掘教材,进一步把握知识点和考点。
3、多听课,学习同科目教师先进的教学方法的教学理念。
4、加强转差培优力度,加强教学反思,加大教学投入。
九年级数学教学工作总结
(2012—2013学年度第一学期)
教师:王刚
普定县城关镇第一中学
九年级数学教学设计 (2012—2013学年度第一学期)
教师:王刚
普定县城关镇第一中学

圆与圆的位置关系
普定县城关镇第一中学 王刚
一、 教学目标
1、 通过图形的运动,画出图形,掌握圆与圆的五种位置关系的定义、性质及判定方法;
2、 经历由圆的运动得出两圆的位置关系与数量关系的过程,培养从实际运动变化中抽象出数学问题的能力;
3、 在探索的过程中渗透数形结合的重要思想。
二、 新知重难点
重点:圆和圆的五种位置关系的概念及相切两圆的连心线的性质; 难点:相交两圆的圆心距与两圆半径之间的关系。 教学流程:
一、 新知生长点
如图,设点O与直线l的距离为d,⊙O的半径为r,请根据图形写出d与r的大小关系及相应的圆与直线的位置关系。
公共点个数;
位置: 相 相 相 大小: d r d r d r
二、 新知探究点
A、探究两圆位置关系及其相应的数量关系
在黑板上画一个圆,用事先准备好的圆形纸片演示“天狗吃月亮”,观察两个圆的公共点的个数,画出相应的图形,并填写下表
说明:类比于直线与圆的位置关系的确定,从两圆的公共点个数入手,给出两圆各种位置关系的定义,并从位置关系中找出圆心距与两圆半径和与两圆半径差的关系,其中以两圆相交时最为困难重点讲解:
如图,R、r、d三条线段构成了一个三角形,因此,可以用三角形三边之间的不等关系来确定当两圆相交时的三者关系:R?rR?rd
例:如图,⊙O的半径为5㎝,点P是圆外一点,OP=8㎝,以P为圆心作一个圆与⊙O相切,则这个圆的半径应为多少?
分析:两圆相切,有两种情况:外切和内切;当外切时d=R?r,当两圆内切时d=R?r
由此可以轻松求出⊙P的半径。(板书解题过程)
B、探究相切两圆连心线的性质
思考:如图,⊙O1与⊙O2相切,这个图形是轴对称图形吗?如果是,它的对称轴是什么?切点与对称轴有什么位置关系?
说明:经过学生思考后归纳相切两圆连心线的性质:相切两圆的连心线必过切点
三、 课堂小结
1、
2、 两圆位置关系与数量关系 两圆位置关系与直线与圆的位置关系的区别与联系
四、 新知检测点
《互动课堂》中“尝试训练”
五、 作业
《自主检测》中的对应练习
九年级数学教学反思 (2012—2013学年度第一学期)
教师:王刚
普定县城关镇第一中学
九年级数学上册教学反思
初三的半个学期的教学任务已经完成了,我发现学生学习数学越来越感到吃力,不感兴趣,在教学中虽然自己多方面的努力但收效甚微,难以改变这种厌数学的现状。究竟是什么原因呢?
数学来自于生活,又必须回归于生活.数学只有在生活中才能赋予活力和灵性.数学学习内容远离生活无疑是导致学生对数学无兴趣的根本原因,它使本该生动活泼的数学学习活动变得死气沉沉.有鉴于此,数学的教与学应该富有生活气息,注重现实体验,变传统的“书本中学数学”为“生活中学数学”.
例如:25.3用频率估计概率的内容,把学生分组进行掷硬活动,让学生再次经历了数据的收集、整理、描述与分析的过程,进一步发展学生的统计意识,发现数据中隐藏的规律:当试验次数很大时,一件事情发生的频率隐定于理论上的概率附近。学生用自己所学的知识去解决这些问题,进一步巩固他们所学的知识,使他们亲身体验到了数学知识的有用性,感受到数学与生活的紧密联系,才会使学生感受到数学不再是那样的枯燥,空洞与抽象,这样才能激起学生对学习数学兴趣与积极性。
数学难学与数学必学的关系。数学难学这是大多数学生的体会。数学现在已渗透到社会的各个领域,应用越来越广泛,越来越深刻,它是人们必备的知识。人的发展离不开数学作支撑。所以,数学教学中,必须要化难为易、化深奥为通俗,使更多的学生热爱数学,喜欢数学,学好数学,为未来的发展打好数学基础。只要创造性地教,就
能唤起学生创造性地学,教与学就能碰撞出创造的火花,我们的学生就能萌发创新意识,就会富有创新能力,我们的教育就能培养出21世纪所需要的创新人才。
课本的同一性与发展需要的层次性的关系。现在学生都学同一数学课本(相对一定范围而言),但今后运用数学的层次又不同,这就要以学生发展的需要来确定数学要求。因为不同的学生有不同的思维方式,不同的兴趣爱好,不同的发展潜能,所以,数学教学应让学生在掌握一些共同的基本知识的同时,能够有机会接触、了解乃至钻研自己感兴趣的数学问题,最大限度地满足每个学生的数学需要。如组织学生参加数学兴趣小组,发展其数学特长。
就初中而言,思维速度的训练主要依靠课堂,合理安排课堂教学内容,利用生动活泼的教学形式训练学生的思维速度是提高教学质量的根本途径。如讲解新课后,可以出部分选择题让学生在规定的时间内完成,也可以出综合性较强的题,让学生积极思考,在规定时间内看有多少同学能够做出来,或让每一个同学在规定时间出一份试卷,看谁的试卷质量高。
在教学中一定要从学生的实际情况出发,要充分考虑到不同层次的学生对知识的不同需求,要善于使用现代数学教学方法,从培养学生适应高速发展的社会所需要的各种能力为出发点,充分合理地使用数学资源,丰富学生的知识,要求学生不断地总结自己的学习,以便于使他们发现自己的优点和缺点,使得他们在以后的学习中进一步改进,从而达到我们的教学目的,完成我们的教学任务。
数学教学论文 (2012—2013学年度第一学期)
教师:王刚 普定县城关镇第一中学
谈谈数学课的几种导入方法
常言道:“万事开头难”。要想上好一堂数学课,良好的开端是成功的一半。几十年来,我一直努力探索和试验,总结出了数学课的几种导入方法。
一、温固知新导入法
温固知新的教学方法,可以将新旧知识有机的结合起来,使学生从旧知识的复习中自然获得新知识。例如:在讲切割定理时,先复习相交弦定理内容及证明,即“圆”内两条相交弦被交点分成的两条线段长的积相等。然后移动两弦使其交点在圆外有三种情况。这样学生较易理解切割线定理、推论的数学表达式,在此基础上引导学生叙述定理内容,并总结圆幂定理的共同处是表示线段积相等。区别在于相交弦定理是交点内分线段,而切割线定理,推论是外分线段、切线上定理的两端点重合。这样导入,学生能从旧知识的复习中,发现一串新知识,并且掌握了证明线段积相等的方法。
二、类比导入法
在讲相似三角形性质时,可以从全等三角形性质为例类比。全等三角形的对应边、对应角、对应线段、对应周长等相等。那么相似三角形这几组量怎么样?这种方法使学生能从类推中促进知识的迁移,发现新知识。
三、亲手实践导入法
亲手实践导入法是组织学生进行实践操作,通过学生自己动手动脑去探索知识,发现真理。例如在讲三角形内角和为180°时,让
学生将三角形的三个内角剪下拼在一起。从而从实践中总结出三角形内角和为180°,使学生享受到发现真理的快乐。
四、反馈导入法
根据信息论的反馈原理,一上课就给学生提出一些问题,由学生的反馈效果给予肯定或纠正后导入新课。如在上直角三角形习题课时,课前可以先拟一个有代表性的习题让学生讨论。
五、设疑式导入法
设疑式导入法是根据中学生追根求源的心理特点,一上课就给学生创设一些疑问,创设矛盾,设置悬念,引起思考,使学生产生迫切学习的浓厚兴趣,诱导学生由疑到思,由思到知的一种方法。例如:有一个同学想依照亲戚家的三角形玻璃板割一块三角形,他能不能把玻璃带回家就割出同样的一块三角形呢?同学们议论纷纷。然后,我向同学们说,要解决这个问题要用到三角形的判定。现在我们就解决这个问题——全等三角形的判定。
六、演示教具导入法
演示教具导入法能使学生把抽象的东西,通过演示教具形象、具体、生动、直观地掌握知识。例如:在讲弦切角定义时,先把圆规两脚分开,将顶点放在事先在黑板上画好的圆上,让两边与园相交成圆周角∠BAC,当∠BAC的一边不动,另一边AB绕顶点A旋转到与圆相切时,让学生观察这个角的特点,是顶点在圆上一边与圆相交,另一边与圆相切。它与圆周角不同处是其中一条边是圆的切线。这种教学方法,使学生印象深,容易理解,记得牢。
七、直接导入法
它是一上课就把要解决的问题提出来的一种方法。如在讲切割定理时,先将定理的内容写在黑板上,让学生分清已知求证后,师生共同证明。
八、强调式导入法
根据中学生对有意义的东西感兴趣的特点,一上课就叙述本课或本章的重要性的一种方法。例如:三角形是平面几何的重点,而圆是平面几何重点的重点,它在中考试题中占有重要地位,是将来学习深造的基矗今天,我们就学习,第七章圆。总之,数学的导入法很多,其关键就是要创造最佳的课堂气氛和环境,充分调动内在积极因素,激发求知欲,使学生处于精神振奋状态,注意力集中,为学生能顺利接受新知识创造有利的条件。
初中数学教学心得
数学新课程标准明确指出,义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实行“人人学有价值的数学”。这不禁让我重新对这一理念加以剖析。19世纪恩格斯说:“数学是关于空间形式和数量关系的学科。”而作为数学学科三大部分(数与代数、几何和统计)之一的数与代数部分,它是中小学数学课程中的经典内容,它在义务教育的阶段的数学课程中占有相当重要的地位,有着重要的教育价值。在新的课程标准下,这一学习领域的目标、内容、结构以及教学活动方面都发生了很大的变化。下面从三个方面谈谈自己的感想。
(一)《标准》在总体目标中提出要使学生“经历运用数学符号和图形描述现实世界的过程,建立数感和符号感,发展抽象思维。” 可见,理解数感、符号感让学生在数学学习的过程中建立数感和符号感是非常重要的,是进入数学学习的基础。在义务教育阶段学生要学习整数、小数、分数、有理数、实数等数的概念,这些概念本身是抽象的,但通过数学的学习,使学生能将这些数的概念与它们所表示的实际意义建立起联系,例如,一百万有多大,一把黄豆大约有多少粒等等。在课程标准中,重视对数的意义的理解,培养学生的数感和符号感,淡化过分“形式化”和记忆的要求,使学生在学习数学的过程中自主活动,不仅提高了自身的数学素养,还有助于他们利用数学头脑来理解和解释现实问题。
数学与现实生活是密切相关的。联合国教科文组织早在八十年代初就提出“数学问题解决应作为学校数学教育的中心”。因此,有价值的数学更多地体现在学生用数学的眼光和思维去观察、认识日常生活现象,去解决生活中的问题,获得或提高适应生活的能力。过去教师一直非常重视学生笔算的正确率和熟练度,学生缺乏估算意识与估算方法。但在日常生活中恰恰是估算较笔算用得更为广泛。我们常常需要估计上学、上班所用的时间,估计完成某一任务(烧饭、买菜、做作业等)所需的时间,估计写一篇文章所需的纸量,放置冰箱所需地方的大小,估计一次旅游所需的费用等等。因此,加强估算,培养学生估算意识,发展学生的估算能力,具有重要的价值。新课程标准也反复强调要加强估算,淡化笔算。
(二)“数与代数”有利于发展学生思维、能力,培养数学情感的数学。
在提倡“人人学有价值的数学”的今天,将这一理念落实到中学阶段,就要求我们教师不仅仅要关注学生知识技能掌握如何,更要关注到学生的情感、态度、价值观和一般能力的培养。学生的思维能力、思想方法、习惯、情感和态度对于学生今后去创造生活有着不可估量的价值。因此,“数与代数”作为基础部分,它的主要内容是研究现实世界数量关系和运动、变化规律中的数学模型,它可以帮助人们从数量关系的角度更准确、清晰的认识、描述和把握现实世界和解决现实世界的问题,能有效发展学生思维、培养数学情感的,就是有价值的数学。
从古时用结绳记数、刻痕记数开始,到算盘的使用,到计算器的使用,到现代大型计算机的问世,直至今天微机的广泛使用。无不说明了创新的价值。所以,只有具有创新精神的人,才能不断创造出更加精彩的世界。因此,能培养学生创新精神的数学就是有价值的数学。这主要体现在解题策略多样化上。对一个问题能从多角度、多层次去思考,对一个事物能做多方面的解释,对一个对象能用多种方式去表达,对一个问题能想出多种不同的解法,那么就不但可以发展自己的思维能力,还会对这一问题的认识更全面、更深刻,有助于学生创新精神的培养。
“数与代数”这一基础部分正是搭建这种思维的桥梁。它不仅能在数的运算、公式的推导、方程的求解、函数的研究等活动中通过对现实情境中数量关系及其变化规律的探索促进学生探究和发现,培养初步的创新精神和实践能力,还能利用正数与负数、精确与近似、方程与求解、已知与未知等概念中蕴涵着对立统一的思想,变量和函数概念中蕴涵着的运动、变化的思想,促进学生用数学、科学的观点认识现实世界!
数学教学心得 (2012—2013学年度第一学期)
教师:王刚 普定县城关镇第一中学