如图 在三角形abc中 在△abc中 如图1.在△ABC中.AB=BC.P为AB边上一点.连接CP

试题详情
(2010?南平)如图1,在△ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边作?APCD,AC与PD相交于点E,已知∠ABC=∠AEP=α(0°<α<90°).
(1)求证:∠EAP=∠EPA;
(2)?APCD是否为矩形?请说明理由;
(3)如图2,F为BC中点,连接FP,将∠AEP绕点E顺时针旋转适当的角度,得到∠MEN(点M、N分别是∠MEN的两边与BA、FP延长线的交点).猜想线段EM与EN之间的数量关系,并证明你的结论.
如图 在三角形abc中 在△abc中 如图1.在△ABC中.AB=BC.P为AB边上一点.连接CP


试题答案
【答案】分析:(1)根据AB=BC可证∠CAB=∠ACB,则在△ABC与△AEP中,有两个角对应相等,根据三角形内角和定理,即可证得;(2)由(1)知∠EPA=∠EAP,则AC=DP,根据对角线相等的平行四边形是矩形即可证明;(3)可以证明△EAM≌△EPN,从而得到EM=EN.解答:(1)证明:在△ABC和△AEP中,∵∠ABC=∠AEP,∠BAC=∠EAP,∴∠ACB=∠APE,在△ABC中,AB=BC,∴∠ACB=∠BAC,∴∠EPA=∠EAP.(2)解:?APCD是矩形.理由如下:∵四边形APCD是平行四边形,∴AC=2EA,PD=2EP,∵由(1)知∠EPA=∠EAP,∴EA=EP,则AC=PD,∴?APCD是矩形.(3)解:EM=EN.证明:∵EA=EP,∴∠EPA===90°-α,∴∠EAM=180°-∠EPA=180°-(90°-α)=90°+α,由(2)知∠CPB=90°,F是BC的中点,∴FP=FB,∴∠FPB=∠ABC=α,∴∠EPN=∠EPA+∠APN=∠EPA+∠FPB=90°-α+α=90°+α,∴∠EAM=∠EPN,∵∠AEP绕点E顺时针旋转适当的角度,得到∠MEN,∴∠AEP=∠MEN,∴∠AEP-∠AEN=∠MEN-∠AEN,即∠MEA=∠NEP,在△EAM和△EPN中,∴△EAM≌△EPN(ASA),∴EM=EN.点评:本题主要考查了等腰三角形的性质,以及矩形的判定方法,在旋转中找到题目中存在的相等的线段以及相等的角是解决本题的关键.  

爱华网本文地址 » http://www.aihuau.com/a/351851/565431123347.html

更多阅读

讨论 无功功率的危害有多大 无功功率

无功功率(wattless power )许多用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。为建立交变磁场和感应磁通而需要的电功率称为无功功率,因此,所谓的"无功"并不是"无用"的

技术区别:上升三角形和矩形箱体震荡

1、对称三角形也叫收敛三角形,是股票比较常见的整理形态,有时也会出现趋势逆转突破的情况,但机率出现的比较少,通过一系列市场不完全统计,对称三角形中大约四分之三属整理形态,四分之一则属升市顶部或跌市底部出现的转势形态。整理形态是

《相似三角形性质》的教学反思 相似三角形教学反思

作为教师怎么处理教材为好?怎么引入新课?怎么展开课堂教学?等等一系列问题,人人都在不断的思考中追求完美,努力求得效果最好。我教相似三角形性质的第一课时,主要是导出相似三角形的性质定理1,并进行初步运用,让学生经历相似三角形性质探索

三角形内周长最短的内接三角形 圆内接三角形周长

问题是这样的:证明:在△ABC的每条边上各取一点D、E、F,△DEF称为△ABC的内接三角形。试在锐角三角形ABC的所有内接三角形中,求周长最短的三角形。证明:可将此题分三步来做(1)设D是BC上固定点,求此时的周长最短的内接三角形。  作D关于A

证明——三角形九点共圆 证明五点共圆

九点共圆,指的是三角形中,三边的中点、三条高的垂足、垂心到三顶点连线的中点,这九个点分布在同一圆上。这个定理看起来是很不好证的 ,但是如果先不把九个点都考虑进来,只考虑一边中点、一个垂足、垂心到一顶点连线中点这三点共圆,那是肯

声明:《如图 在三角形abc中 在△abc中 如图1.在△ABC中.AB=BC.P为AB边上一点.连接CP》为网友鈊囚箛島分享!如侵犯到您的合法权益请联系我们删除