等边三角形边长公式 等边三角形的定义 将如图所示的边长为a的等边三角形铁片,剪去三个四边形,做成一个无盖的正三棱柱形容器(不计接缝),设容

将如图所示的边长为a的等边三角形铁片,剪去三个四边形,做成一个无盖的正三棱柱形容器(不计接缝),设容器的高为x,容积为V(x)。
(1)写出函数V(x)的解析式,并求出函数的定义域;
(2)求当x为多少时,容器的容积最大?并求出最大容积。

题型:解答题难度:中档来源:同步题

解:(1)因为容器的高为x,则做成的正三棱柱形容器的底边长为,
则,
函数的定义域为;
(2)实际问题归结为求函数V(x)在区间上的最大值点,
先求V(x)的极值点,在开区间内,,
令V′(x)=0,即,解得,x2=(舍去),
因为在区间内,x1可能是极值点,
当0<x<x1时,V′(x)>0;
当时,V′(x)<0,
因为x1是极大值点,且在区间内,x1是唯一的极值点,
所以是V(x)的最大值点,并且最大值为,
即当正三棱柱形容器高为时,容器的容积最大为。

考点:

考点名称:函数的最值与导数的关系

函数的最大值和最小值:

在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。

利用导数求函数的最值步骤:

(1)求f(x)在(a,b)内的极值;
(2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值。

用导数的方法求最值特别提醒:

①求函数的最大值和最小值需先确定函数的极大值和极小值,因此,函数极大值和极小值的判别是关键,极值与最值的关系:极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值;
②如果仅仅是求最值,还可将上面的办法化简,因为函数fx在[a,b]内的全部极值,只能在f(x)的导数为零的点或导数不存在的点取得(下称这两种点为可疑点),所以只需要将这些可疑点求出来,然后算出f(x)在可疑点处的函数值,与区间端点处的函数值进行比较,就能求得最大值和最小值;
③当f(x)为连续函数且在[a,b]上单调时,其最大值、最小值在端点处取得。

生活中的优化问题:

生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题,解决优化问题的方法很多,如:判别式法,均值不等式法,线性规划及利用二次函数的性质等,
不少优化问题可以化为求函数最值问题.导数方法是解这类问题的有效工具.

用导数解决生活中的优化问题应当注意的问题:

(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去;
(2)在实际问题中,有时会遇到函数在区间内只有一个点使f'(x)=0的情形.如果函数在这点有极大(小)值,那么不与端点比较,也可以知道这就是最大(小)值;
(3)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.

等边三角形边长公式 等边三角形的定义 将如图所示的边长为a的等边三角形铁片,剪去三个四边形,做成一个无盖的正三棱柱形容器(不计接缝),设容

利用导数解决生活中的优化问题:

(1)运用导数解决实际问题,关键是要建立恰当的数学模型(函数关系、方程或不等式),运用导数的知识与方法去解决,主要是转化为求最值问题,最后反馈到实际问题之中.
(2)利用导数求f(x)在闭区间[a,b]上的最大值和最小值的步骤,
①求函数y =f(x)在(a,b)上的极值;
②将函数y=f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
(3)定义在开区间(a,b)上的可导函数,如果只有一个极值点,该极值点必为最值点.

考点名称:函数的定义域、值域

定义域、值域的概念:

自变量取值范围叫做函数的定义域,函数值的集合叫做函数的值域。

1、求函数定义域的常用方法有:

(1)根据解析式要求如偶次根式的被开方大于零,分母不能为零等;
(2)根据实际问题的要求确定自变量的范围;
(3)根据相关解析式的定义域来确定所求函数自变量的范围;
(4)复合函数的定义域:如果y是u的函数,而u是x的函数,即y=f(u),u=g(x),那么y=f[g(x)]叫做函数f与g的复合函数,u叫做中间变量,设f(x)的定义域是x∈M,g(x)的定义域是x∈N,求y=f[g(x)]的定义域时,则只需求满足的x的集合。设y=f[g(x)]的定义域为P,则 。

3、求函数值域的方法:

(1)利用一些常见函数的单调性和值域,如一次函数,二次函数,反比例函数,指数函数,对数函数,三角函数,形如(a,b为非零常数)的函数;
(2)利用函数的图象即数形结合的方法;
(3)利用均值不等式;
(4)利用判别式;
(5)利用换元法(如三角换元);
(6)分离法:分离常数与分离参数两种形式;
(7)利用复合函数的单调性。(注:二次函数在闭区间上的值域要特别注意对称轴与闭区间的位置关系,含字母时要注意讨论)

考点名称:函数解析式的求解及其常用方法

函数解析式的常用求解方法:

(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。
(2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g(x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。
(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f(x)的式子。
(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。
(5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。

  

爱华网本文地址 » http://www.aihuau.com/a/375951/386552193428.html

更多阅读

四阶魔方 四阶魔方还原公式图文教程 三阶魔方还原公式

本文四阶魔方公式图解是针对四阶魔方教程的降阶法做更多的解释和说明。四阶魔方被认为是2-5阶魔方玩法中最不好复原的,虽然五阶魔方的变化种类比4阶多,但是四阶魔方的中心块并不固定,也就不...顶层和底层都有风筝块和三角块,它们也

鲁长俊:我三年赚下五百万

  鲁长俊:我三年赚下五百万!  如今,一些具有创新意识的新一代农民已彻底抛开了“三亩地,一头牛,老婆孩子热炕头”的旧有观念,他们在生之养之的黄土地上寻找着自己的美好梦想,挖掘着属于自己的“金矿”。吉林省蛟河市23岁的农民鲁长俊

弧长公式 弧长公式-图例,弧长公式-弧长公式

弧长公式:n是圆心角度数,r是半径,α是圆心角弧度。l=nπr÷180或l=n/180・πr或l=|α|r。在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πR,所以n°圆心角所对的弧长为l=n°πR÷180°。在弧度制下,若弧所对的圆心角为θ,

声明:《等边三角形边长公式 等边三角形的定义 将如图所示的边长为a的等边三角形铁片,剪去三个四边形,做成一个无盖的正三棱柱形容器(不计接缝),设容》为网友无所谓没形象分享!如侵犯到您的合法权益请联系我们删除