命题热点一 集合与常用逻辑用语
集合这一知识点是高考每年的必考内容,对集合的考查主要有三个方面:一是集合的运算,二是集合间的关系,三是集合语言的运用. 在试卷中一般以选择题的形式出现,属于容易题.集合知识经常与函数、方程、不等式等知识交汇在一起命题,因此应注意相关知识在解题中的应用.
常用逻辑用语也是每年高考的必考内容,重点考查:充分必要条件的推理判断、四种命题及其相互关系、全称命题与特称命题等,在试卷中一般以选择题的形式出现,属于容易题和中档题,这个考点的试题除了考查常用逻辑用语本身的有关概念与方法,还与其他数学知识联系在一起,所以还要注意知识的灵活运用。
预测1. 已知集合,集合,且,则的取值范围是
A. B. C. D.
解析:化简A得,由于,所以,于是,即的取值范围是,故选B.
动向解读:本题考查集合间的关系,考查子集的概念与应用、不等式的性质等,解答时注意对集合进行合理的化简.
预测2. 若集合,,则等于
A. B. C. D.
解析:依题意,所以.故选C.
动向解读:本题考查集合的基本运算、函数的定义域、不等式的解法等问题,是高考的热点题型.在解决与函数定义域、值域、不等式解集相关的集合问题时,要注意充分利用数轴这一重要工具,通过数形结合的方法进行求解.
预测3. 已知命题为真命题,则实数的取值范围是
A. B. C. D.
解析:依题意,在上恒成立,即.令,由于,所以,于是,因此实数的取值范围是,故选C.
动向解读:本题考查全称命题与特称命题及其真假判断,对于一个全称命题,要说明它是真命题,需要经过严格的逻辑推理与证明,要说明它是一个假命题,只要举出一个反例即可;而对于特称命题,要说明它是一个真命题,只要找到一个值使其成立即可,而要说明它是一个假命题,则应进行逻辑推理与证明.
预测4. “”是“不等式对任意实数x恒成立”的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件

解析:不等式对任意实数x恒成立,则有,又因为,所以必有,故“”是“不等式对任意实数x恒成立”的必要不充分条件.故选B.
动向解读:本题考查充分必要条件的推理判断,这是高考的一个热点题型,因为这类问题不仅能够考查逻辑用语中的有关概念与方法,还能较好地考查其他相关的数学知识,是一个知识交汇的重要载体.解答这类问题时要明确充分条件、必要条件、充要条件的概念,更重要的是要善于列举反例.