∵奇函数f(x)与偶函数g(x)满足f(x)+g(x)=ax-a-x+2,
∴f(x)=-f(x),g(x)=g(-x).
∵f(x)+g(x)=ax-a-x+2,①
∴f(-x)+g(-x)=a-x-ax+2,
∴g(x)-f(x)=a-x-ax+2.②
①+②,得2g(x)=4,
∴g(x)=2.
∵g(b)=a,∴a=2.
∴f(x)=2x-2-x+2-g(x)=2x-2-x.
∴f(2)=22-2-2=4-14=154.
故选D.
考点:
考点名称:函数的奇偶性、周期性函数的奇偶性定义:
偶函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),则称函数f(x)为偶函数。
奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数。
函数的周期性:
(1)定义:若T为非零常数,对于定义域内的任一x,使f(x+T)=f(x)恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。
周期函数定义域必是无界的。
(2)若T是周期,则k·T(k≠0,k∈Z)也是周期,所有周期中最小的正数叫最小正周期。一般所说的周期是指函数的最小正周期。
周期函数并非都有最小正周期,如常函数f(x)=C。
奇函数与偶函数性质:
(1)奇函数与偶函数的图像的对称性:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
(3)在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数; ②两个偶函数的和、积是偶函数; ③一个奇函数,一个偶函数的积是奇函数。
注:定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.
1、函数是奇函数或偶函数的前提定义域必须关于原点对称;定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.
2、函数的周期性 令a,b均不为零,若:
(1)函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|
(2)函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|
(3)函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|
(4)函数y=f(x)存在f(x+a)===>函数最小正周期T=|2a|
(5)函数y=f(x)存在f(x+a)===>函数最小正周期T=|4a|
恰当选择自变量将问题的目标表示成自变量的函数f(x)=a·bx+c(a、b、c为常数,a≠0,b>0,b≠1)的形式,进而结合指数函数的性质解决问题。
指数型复合函数的性质的应用:
(1)与指数函数有关的复合函数基本上有两类:
;②.无论是哪一类,要搞清楚复合过程,才能确定复合函数的值域和单调区间,具体问题中,a的取值不定时,要对a进行分类讨论.
(2)对于形如一类的指数型复合函数,有以下结论:
①函数的定义域与f(x)的定义域相同;
②先确定函数f(x)的值域,再根据指数函数的值域、单调性,确定函数的值域;
③当a>l时,函数与函数f(x)的单调性相同;当O<a<l时,函数与函数f(x)的单调性相反.
