氧化锌薄膜 德国应用化学收录文章:阵列氧化锌纳米棒薄膜的超亲水超疏水可逆转换

导读:爱华网网友为您分享以下“德国应用化学收录文章:阵列氧化锌纳米棒薄膜的超亲水超疏水可逆转换”的资讯,希望对您有所帮助,感谢您对aIhUaU.com的支持!

PublishedonWeb12/11/2003

ReversibleSuper-hydrophobicitytoSuper-hydrophilicityTransitionofAligned

ZnONanorodFilms

XinjianFeng,LinFeng,MeihuaJin,JinZhai,LeiJiang,*andDaobenZhu

CenterforMolecularSciences,InstituteofChemistry,ChineseAcademyofSciences,Beijing100080,P.R.China

ReceivedSeptember21,2003;E-mail:jianglei@iccas.ac.cn

Wettabilityisaveryimportantpropertygovernedbyboththechemicalcompositionandthegeometricalstructureofsolidsur-faces.1Super-hydrophobicsurface(withwatercontactangle(CA)largerthan150°)andsuper-hydrophilicsurfaces(CAcloseto0°)havebeenextensivelyinvestigatedduetotheirimportanceforin-dustrialapplications.2-6Recently,withthedevelopmentofsmartdevices,suchasintelligentmicrofluidicswitch,reversiblycontrol-lingthesurfacewettabilityhasarousedgreatinterestandbeenrealizedbymodifyingthesurfacewithstimuli-responsiveorganiccompounds.7However,reversibleswitchingbetweensuper-hydro-phobicityandsuper-hydrophilicityhasneverbeenreported.Long-termdurabilityisalsodifficulttobeexpectedbecauseofpoorchem-ical,thermal,andmechanicalstabilitiesoftheorganiccompounds.Beingawideband-gapsemiconductor,ZnOpossessesdiverserangeofhightechnologicalapplications.8,9However,nearlyalloftheapplicationsarebasedonitsoptical,electronic,andacousticproperties.Inthispaper,controllablewettabilityofalignedZnOnanorodfilmsisreported.Thisinorganicoxidefilmsshowsuper-hydrophobicityandsuper-hydrophilicityatdifferentconditions,andthewettabilitycanbereversiblyswitchedbyalternationofultraviolet(UV)irradiationanddarkstorage.Thiseffectisbelievedtobeduetothecooperationofthesurfacephotosensitivityandthealignednanostructureofthefilms.SuchspecialwettabilitywillgreatlyextendtheapplicationsofZnOfilmstomanyotherimportantfields.

ThealignedZnOnanorodsweresynthesizedviaatwo-stepsolutionapproach.First,ZnOsol,preparedaccordingtothemethodofSakohara,10wasspincastontoaglasswaferseveraltimesandannealedat420°Ctopreparea50-100nmthickfilmofcrystalseeds.Thesol-gelmethodwasadoptedherebecauseofitssimplefacilityandlowcost.Inparticular,itderivesfilmswithpreferentialc-axialorientation,11whichisfavorableforthesubsequentgrowthofZnOnanorods.Thentheas-preparedwaferwassuspendedinanaqueoussolutionofzincnitratehydrate(0.025M)andmethenamine(0.025M)at90°Cfor3h,anditwasremovedfromthesolution,rinsedwithdeionizedwater,dried,andstoredinthedarkundercleanairforseveraldays.Figures1aand1baretypicalfield-emissionscanningelectronmicroscope(FE-SEM)top-imagesoftheaspreparedfilmsatlowandhighmagnifications,respectively,showingahighlyuniformanddenselypackedarrayofnanorods.Thenanorodshaveflathexagonalcrystallographicplanesprojectingoutofthecrystalseedslayer,andtheirdiametersareof50-150nm.Figure1cisacross-sectionalviewofthesample,showingthatthenanorodsgrowalmostperpendicularlyontothesubstrates,andtheirlengthsareabout1.2μm.AsconfirmedbyX-raydiffraction(XRD)witharemarkablyenhanced(002)peak(Figure1d),thesurfaceofthefilmsisthe(001)planeofthenanorods.Thewettabilitywasevaluatedbythewatercontactanglemeasurementoftheas-preparedfilms.Figure2a(right)showsasphericalwaterdropletwithawaterCAof161.2(1.3°.UponUV(obtainedfroma500WHglampwithafiltercenteredat365

62

9

J.AM.CHEM.SOC.2004,126,62-63

Figure1.(a,b)FE-SEMtop-imagesoftheas-preparedZnOnanorodfilmsatlowandhighmagnifications,respectively.(c)Cross-sectionalviewofthealignedZnOnanorods.(d)XRDpatternoftheas-synthesizednanorod

films.

Figure2.(a)PhotographsofwaterdropletshapeonthealignedZnOnanorodfilmsbefore(left)andafter(right)UVillumination.(b)Reversiblesuper-hydrophobic-super-hydrophilictransitionoftheas-preparedfilmsunderthealternationofUVirradiationanddark

storage.

(10nm)irradiationfor2h,thewaterdropletspreadoutonthefilm,resultinginaCAofabout0°(Figure2a,right).Theseresultsindicatethatthewettabilitychangesfromsuper-hydrophobicitytosuper-hydrophilicity.AftertheUVirradiatedfilmswereplacedinthedarkfor7days,anewwaterdropletwasusedtomeasurethesurfacewettability,andthesuper-hydrophobicityofthenanorodfilmswasobtainedagain.Thisprocesshasbeenrepeatedseveraltimes,andgoodreversibilityofthesurfacewettabilitywasobserved(showninFigure

2b).

10.1021/ja038636oCCC:$27.50?2004AmericanChemicalSociety

Tothoroughlyunderstandthereversiblesuper-hydrophobicitytosuper-hydrophilicitytransitionofthealignedZnOnanorodfilms,thesurfacefreeenergyandthesurfaceroughness,whicharetwomainfactorsgoverningthesurfacewettability,areconsidered.Itiswell-knownthatonlywhenthesurfacefreeenergiesofthevariouscrystallographicplanesdiffersignificantlycouldananisotropicnanorodgrowthberealized,12andafastgrowingplanegenerallytendstodisappearleavingbehindslowergrowingplaneswithlowersurfaceenergy.FortheanisotropicZnOnanorod,thevelocitiesofcrystalgrowthindifferentdirectionswerereportedtobe[-100]>[-101]>[001]≈[00-1].13Figure1showthattheZnOnanorodsarealmostverticallyorientedwiththewell-faceted(001)endprojectingout.ComparedwithotherrandomorientationofZnOnanocrystalfilms,14,15theas-preparedfilmshavethelowestsurfacefreeenergy.Figure1alsoshowsthatthenanorodsgrowseparatelyonthesubstrate,andaircanbepresentinthetroughsbetweenindividualnanorods.Thehydrophobicityofaroughsurfacecanbeintensifiedbyincreasingtheproportionofair/waterinterface,1be.g.,super-hydrophobicsurfaceshavebeensuccessfullyfabricatedbythealignedcarbonnanotubesandpolymernanofibers.4Thenanorodsandaircompositeroughsurfacestructureinthiscasecanalsogreatlyenhancethehydrophobicityofthefilms.Accord-ingly,boththelowersurfacefreeenergyandthehighersurfaceroughnesscontributetothesuper-hydrophobicityoftheas-preparedfilms.

Asreported,15UVirradiationwillgenerateelectron-holepairsintheZnOsurface,andsomeoftheholescanreactwithlatticeoxygentoformsurfaceoxygenvacancies.Meanwhile,waterandoxygenmaycompetetodissociativelyadsorbonthem.Thedefectivesitesarekineticallymorefavorableforhydroxyladsorp-tionthanoxygenadsorption.Asaresult,thesurfacehydrophilicityisimproved,andthewaterCAofarelativeflatZnOsurfacechangesfrom109°to5°.15Foraroughsurface,waterwillenterandfillthegroovesofthefilms,leavingonlytheuppartofthenanorodsnotincontactwiththeliquid,whichisthethree-dimensionalcapillaryeffectofaroughsurface.6ThiseffectresultsinawaterCAofabout0°.Namely,combiningwiththeroughstructure,theUVirradiationcausesthesurfacewettabilityofalignedZnOnanorodfilmstochangefromsuper-hydrophobicitytosuper-hydrophilicity.Ithasbeendemonstratedthatthesurfacebecomesenergeticallyunstableafterthehydroxyladsorption.Whiletheoxygenadsorptionisthermodynamicallyfavored,anditismorestronglybondedonthedefectsitesthanthehydroxylgroup.15AsimilarresulthasalsobeenobservedontheTiO2surface.5b,16Therefore,thehydroxylgroupsadsorbedonthedefectivesitescanbereplacedgraduallybyoxygenatomswhentheUV-irradiatedfilmswereplacedinthedark.Subsequently,thesurfaceevolvesbacktoitsoriginalstate(beforeUVirradiation),andthewettabilityisreconvertedfromsuper-hydrophilicitytosuper-hydrophobicity.

Onthebasisoftheaboveanalysis,itcanbeconcludedthatthereversibleswitchingbetweensuper-hydrophilicityandsuper-hydrophobicityisrelatedtothecooperationofthesurfacechemicalcompositionandthesurfaceroughness.Theformerprovidesaphotosensitivesurface,whichcanbeswitchedbetweenhydrophi-licityandhydrophobicity,andthelatterfurtherenhancesthese

COMMUNICATIONS

properties.Inaddition,thereversibleconversionsofthesurfacewettabilityproceedonlybytheadsorptionanddesorptionofsurfacehydroxylgroupsattheoutmostlayerofoxidefilms,5bwhilethestructurebelowtheoutmostlayerremainsstable,freefromchangesinchemicalconditions.Therefore,itisreasonablethatthereversiblewettabilityswitchingpropertiesoftheas-preparedfilmsexhibitlong-termdurability.

Insummary,thewettabilityofalignedZnOnanorodfilmswasinvestigated.Reversiblesuper-hydrophobicitytosuper-hydrophi-licitytransitionwasobservedandintelligentlycontrolledbyalternationofUVilluminationanddarkstorage.Thisreversibletransitionofsurfacewettabilityisacompletelynewconceptforpreparingsmartfilms.Thisstrategycanbeextendedtootherstimuli-responsivesurfaceswithsimilarnanostructureandhigherstability,whichiscertainlysignificantforfutureindustrialapplica-tions.

Acknowledgment.TheauthorsthanktheStateKeyProjectforFundamentalResearch(G1999064504)andtheSpecialResearchFoundationoftheNationalNaturalScienceFoundationofChina(29992530,20/25/02)forcontinuingfinancialsupport.

References

(1)(a)(2)D.;Wenzel,R.N.Ind.Eng.Chem.1936,28,988-994.(b)Cassie,A.B.

(3)Parker,Baxter,(a)A.R.;S.Trans.Lawrence,FaradayC.R.SocNature.19442001,40,,414546-551.2127.Onda,Erbil,(b)T.;H.Y.;O¨ner,Shibuichi,S.;Satoh,N.;Tsujii,K.Langmuir,33-34.

1996,12,2125-DemirelD.;McCarthy,A.L.;Avc?T.Y.;J.LangmuirMert,O.Science2000,162003,7777,299-7782.,1377(c)-(4)1380.

Feng,L.;Li,S.H.;Li,Y.S.;Li,H.J.;Zhang,L.J.;Zhai,J.;(5)Liu,(a)B.Q.;Jiang,L.;Zhu,D.B.AdV.Mater.2002,14,1857Song,-1860.Y.L.;

Kitamura,Wang,R.;Hashimoto,K.;Fujishima,A.;Chikuni,M.;Kojima,E.;

432.A.;Shimohigoshi,M.;Watanabe,T.Nature1997,388,431-(6)K.(a)J.(b)Phys.Wang,Chem.R.;BSakai,1999,N.;103Fujishima,,2188-2194.A.;Watanabe,T.;Hashimoto,(7)(b)Bico,(a)Bico,J.;J.;Tordeux,Thiele,U.;C.;QueQue′re′,D.Europhys.Lett.2001,55,214-220.

1626.Ichimura,K.;Oh,S.K.;′re′Nakagawa,,D.ColloidsM.Surf.,A2002,206,41-46.Choi371I.(b)S.;Lahann,Hoffer,J.;S.;Mitragotri,Science2000,288,1624-Somorjai,S.;Tran,T.;Kaido,H.;Sundaram,J.;Macromolecules-374.(c)Liang,L.;Feng,X.;G.D.;A.;Liu,Langer,J.;Rieke,R.P.ScienceC.;Fryxell,2003,299,H.;Pispas,S.;Hadjichristidis,1998,31,7845N.;-Neophytides,7850.(d)Anastasiadis,G.E.S.MacromoleculesS.H.;Retsos,2003,(8)36(a),1994Koinuma,Tang,-Z.1999.

Pan,Huang,Z.W.;H.;K.;Dai,Segawa,Wong,Z.R.;Wang,Y.G.Appl.K.L.;Yu,P.;Kawasaki,M.;Ohtomo,A.;

Z.Phys.L.ScienceLett.20011998,,29172,,3270-3272.(b)(9)R.;(a)Russo,M.R.;H.;Yang,Mao,S.;P.ScienceFeick,H.;Yan,H.;Wu,Y.;Kind,1947-H.;1949.Weber,(c)Am.Tian,Goldberger,Chem.Z.Soc.R.;Voigt,J.A.;Liu,2001J.;Mckenzie,,292,1897B.;-1895.

Mcdermott,M.J.J.

J.;Kim,2002F.;,124Johnson,,12954J.-C.;12955.Zhang,(b)Y.;Greene,Saykally,L.E.;Law,M.;(10)P.Sakohara,Angew.Chem.S.;Tickanen,,Int.EdL..2003D.;,R.J.;Yang,Anderson,42,3031-M.3034.

A.J.Phys.Chem.1992,

(11)96(12)Fujihara,,11086Puntes,V.S.;-11091.

氧化锌薄膜 德国应用化学收录文章:阵列氧化锌纳米棒薄膜的超亲水超疏水可逆转换

F.;Sasaki,Krishnan,C.;K.Kimura,M.;Alivisatos,T.Appl.Surf.A.P.Sci.Science20012001,180,291,341,2115-350.-(13)2117.

Vayssieres,L.;(14)13Keis,K.;Hagfeldt,A.;Lindquist,S.E.Chem.Mater.2001,

Li,,M.;4395Zhai,-4398.

J.;Liu,H.;Song,(15)BSun,2003Y.L.;Jiang,L.;Zhu,D.B.J.Phys.Chem.

R.,D.;107Nakajima,,9954-957.

A.;Fujishima,(16)Phys.Wang,Chem.1995,344L.,Q.;B237Baer,2001,-350.

D.105A.;Watanabe,T.;Hashimoto,K.J.

R.;,1984Engelhard,-1990.

M.H.;Shultz,A.N.Surf.Sci.

JA038636O

J.AM.CHEM.SOC.

9

VOL.126,NO.1,200463


百度搜索“爱华网”,专业资料,生活学习,尽在爱华网  

爱华网本文地址 » http://www.aihuau.com/a/411451/264801262300.html

更多阅读

氧化锌的应用范围 沃尔评分法的应用范围

氧化锌是两性化合物,通过其碱性可以与酸性物质结合。在低酸指数的结合中,氧化锌产生锌皂,提高了颜料的润湿性,使分散更为容易,同时促使涂料粘度略为提高并减少了沉淀。在高酸指数的粘接剂里,在容器中会极度增稠。氧化锌是橡胶和轮胎工业必

氧化锌软膏 氧化锌软膏价格

通用名称: 氧化锌软膏剂英文名称:Zinc Oxide Ointment其他名称:亚铅华 锌白剂型: 软膏剂规格: 10% 10克/支 20克/支(盒)本说明书包括哪些内容

氧化锌的种类及特点 纸的种类特点及用途

1.医药级氧化锌医药级氧化锌主要用于膏剂、片剂、胶囊及针剂药品的生产。特别是许多新特药品的必要成分。作用及特点:a.纯度高,能较好地起到药理作用。b.粒径小,便于使用,有利于与其他配料充分混合。c.对人体不利成分少,特别是铅、镉、汞

国外热浸镀锌技术的应用一瞥 热浸镀锌无缝钢管

国外热浸镀锌技术的应用一瞥钢铁金属构件,在自然环境的使用过程中,随着使用时间的不断推移,肯定会出现一些生锈腐蚀的情况,当这些没有经过特殊保护措施处理的钢铁构件长期锈蚀以后,它的结构强度也会大大降低。现实工程中,为了保护这些钢

声明:《氧化锌薄膜 德国应用化学收录文章:阵列氧化锌纳米棒薄膜的超亲水超疏水可逆转换》为网友晚街听风分享!如侵犯到您的合法权益请联系我们删除