PublishedonWeb12/11/2003
ReversibleSuper-hydrophobicitytoSuper-hydrophilicityTransitionofAligned
ZnONanorodFilms
XinjianFeng,LinFeng,MeihuaJin,JinZhai,LeiJiang,*andDaobenZhu
CenterforMolecularSciences,InstituteofChemistry,ChineseAcademyofSciences,Beijing100080,P.R.China
ReceivedSeptember21,2003;E-mail:jianglei@iccas.ac.cn
Wettabilityisaveryimportantpropertygovernedbyboththechemicalcompositionandthegeometricalstructureofsolidsur-faces.1Super-hydrophobicsurface(withwatercontactangle(CA)largerthan150°)andsuper-hydrophilicsurfaces(CAcloseto0°)havebeenextensivelyinvestigatedduetotheirimportanceforin-dustrialapplications.2-6Recently,withthedevelopmentofsmartdevices,suchasintelligentmicrofluidicswitch,reversiblycontrol-lingthesurfacewettabilityhasarousedgreatinterestandbeenrealizedbymodifyingthesurfacewithstimuli-responsiveorganiccompounds.7However,reversibleswitchingbetweensuper-hydro-phobicityandsuper-hydrophilicityhasneverbeenreported.Long-termdurabilityisalsodifficulttobeexpectedbecauseofpoorchem-ical,thermal,andmechanicalstabilitiesoftheorganiccompounds.Beingawideband-gapsemiconductor,ZnOpossessesdiverserangeofhightechnologicalapplications.8,9However,nearlyalloftheapplicationsarebasedonitsoptical,electronic,andacousticproperties.Inthispaper,controllablewettabilityofalignedZnOnanorodfilmsisreported.Thisinorganicoxidefilmsshowsuper-hydrophobicityandsuper-hydrophilicityatdifferentconditions,andthewettabilitycanbereversiblyswitchedbyalternationofultraviolet(UV)irradiationanddarkstorage.Thiseffectisbelievedtobeduetothecooperationofthesurfacephotosensitivityandthealignednanostructureofthefilms.SuchspecialwettabilitywillgreatlyextendtheapplicationsofZnOfilmstomanyotherimportantfields.
ThealignedZnOnanorodsweresynthesizedviaatwo-stepsolutionapproach.First,ZnOsol,preparedaccordingtothemethodofSakohara,10wasspincastontoaglasswaferseveraltimesandannealedat420°Ctopreparea50-100nmthickfilmofcrystalseeds.Thesol-gelmethodwasadoptedherebecauseofitssimplefacilityandlowcost.Inparticular,itderivesfilmswithpreferentialc-axialorientation,11whichisfavorableforthesubsequentgrowthofZnOnanorods.Thentheas-preparedwaferwassuspendedinanaqueoussolutionofzincnitratehydrate(0.025M)andmethenamine(0.025M)at90°Cfor3h,anditwasremovedfromthesolution,rinsedwithdeionizedwater,dried,andstoredinthedarkundercleanairforseveraldays.Figures1aand1baretypicalfield-emissionscanningelectronmicroscope(FE-SEM)top-imagesoftheaspreparedfilmsatlowandhighmagnifications,respectively,showingahighlyuniformanddenselypackedarrayofnanorods.Thenanorodshaveflathexagonalcrystallographicplanesprojectingoutofthecrystalseedslayer,andtheirdiametersareof50-150nm.Figure1cisacross-sectionalviewofthesample,showingthatthenanorodsgrowalmostperpendicularlyontothesubstrates,andtheirlengthsareabout1.2μm.AsconfirmedbyX-raydiffraction(XRD)witharemarkablyenhanced(002)peak(Figure1d),thesurfaceofthefilmsisthe(001)planeofthenanorods.Thewettabilitywasevaluatedbythewatercontactanglemeasurementoftheas-preparedfilms.Figure2a(right)showsasphericalwaterdropletwithawaterCAof161.2(1.3°.UponUV(obtainedfroma500WHglampwithafiltercenteredat365
62
9
J.AM.CHEM.SOC.2004,126,62-63
Figure1.(a,b)FE-SEMtop-imagesoftheas-preparedZnOnanorodfilmsatlowandhighmagnifications,respectively.(c)Cross-sectionalviewofthealignedZnOnanorods.(d)XRDpatternoftheas-synthesizednanorod
films.
Figure2.(a)PhotographsofwaterdropletshapeonthealignedZnOnanorodfilmsbefore(left)andafter(right)UVillumination.(b)Reversiblesuper-hydrophobic-super-hydrophilictransitionoftheas-preparedfilmsunderthealternationofUVirradiationanddark
storage.
(10nm)irradiationfor2h,thewaterdropletspreadoutonthefilm,resultinginaCAofabout0°(Figure2a,right).Theseresultsindicatethatthewettabilitychangesfromsuper-hydrophobicitytosuper-hydrophilicity.AftertheUVirradiatedfilmswereplacedinthedarkfor7days,anewwaterdropletwasusedtomeasurethesurfacewettability,andthesuper-hydrophobicityofthenanorodfilmswasobtainedagain.Thisprocesshasbeenrepeatedseveraltimes,andgoodreversibilityofthesurfacewettabilitywasobserved(showninFigure
2b).
10.1021/ja038636oCCC:$27.50?2004AmericanChemicalSociety
Tothoroughlyunderstandthereversiblesuper-hydrophobicitytosuper-hydrophilicitytransitionofthealignedZnOnanorodfilms,thesurfacefreeenergyandthesurfaceroughness,whicharetwomainfactorsgoverningthesurfacewettability,areconsidered.Itiswell-knownthatonlywhenthesurfacefreeenergiesofthevariouscrystallographicplanesdiffersignificantlycouldananisotropicnanorodgrowthberealized,12andafastgrowingplanegenerallytendstodisappearleavingbehindslowergrowingplaneswithlowersurfaceenergy.FortheanisotropicZnOnanorod,thevelocitiesofcrystalgrowthindifferentdirectionswerereportedtobe[-100]>[-101]>[001]≈[00-1].13Figure1showthattheZnOnanorodsarealmostverticallyorientedwiththewell-faceted(001)endprojectingout.ComparedwithotherrandomorientationofZnOnanocrystalfilms,14,15theas-preparedfilmshavethelowestsurfacefreeenergy.Figure1alsoshowsthatthenanorodsgrowseparatelyonthesubstrate,andaircanbepresentinthetroughsbetweenindividualnanorods.Thehydrophobicityofaroughsurfacecanbeintensifiedbyincreasingtheproportionofair/waterinterface,1be.g.,super-hydrophobicsurfaceshavebeensuccessfullyfabricatedbythealignedcarbonnanotubesandpolymernanofibers.4Thenanorodsandaircompositeroughsurfacestructureinthiscasecanalsogreatlyenhancethehydrophobicityofthefilms.Accord-ingly,boththelowersurfacefreeenergyandthehighersurfaceroughnesscontributetothesuper-hydrophobicityoftheas-preparedfilms.
Asreported,15UVirradiationwillgenerateelectron-holepairsintheZnOsurface,andsomeoftheholescanreactwithlatticeoxygentoformsurfaceoxygenvacancies.Meanwhile,waterandoxygenmaycompetetodissociativelyadsorbonthem.Thedefectivesitesarekineticallymorefavorableforhydroxyladsorp-tionthanoxygenadsorption.Asaresult,thesurfacehydrophilicityisimproved,andthewaterCAofarelativeflatZnOsurfacechangesfrom109°to5°.15Foraroughsurface,waterwillenterandfillthegroovesofthefilms,leavingonlytheuppartofthenanorodsnotincontactwiththeliquid,whichisthethree-dimensionalcapillaryeffectofaroughsurface.6ThiseffectresultsinawaterCAofabout0°.Namely,combiningwiththeroughstructure,theUVirradiationcausesthesurfacewettabilityofalignedZnOnanorodfilmstochangefromsuper-hydrophobicitytosuper-hydrophilicity.Ithasbeendemonstratedthatthesurfacebecomesenergeticallyunstableafterthehydroxyladsorption.Whiletheoxygenadsorptionisthermodynamicallyfavored,anditismorestronglybondedonthedefectsitesthanthehydroxylgroup.15AsimilarresulthasalsobeenobservedontheTiO2surface.5b,16Therefore,thehydroxylgroupsadsorbedonthedefectivesitescanbereplacedgraduallybyoxygenatomswhentheUV-irradiatedfilmswereplacedinthedark.Subsequently,thesurfaceevolvesbacktoitsoriginalstate(beforeUVirradiation),andthewettabilityisreconvertedfromsuper-hydrophilicitytosuper-hydrophobicity.
Onthebasisoftheaboveanalysis,itcanbeconcludedthatthereversibleswitchingbetweensuper-hydrophilicityandsuper-hydrophobicityisrelatedtothecooperationofthesurfacechemicalcompositionandthesurfaceroughness.Theformerprovidesaphotosensitivesurface,whichcanbeswitchedbetweenhydrophi-licityandhydrophobicity,andthelatterfurtherenhancesthese
COMMUNICATIONS
properties.Inaddition,thereversibleconversionsofthesurfacewettabilityproceedonlybytheadsorptionanddesorptionofsurfacehydroxylgroupsattheoutmostlayerofoxidefilms,5bwhilethestructurebelowtheoutmostlayerremainsstable,freefromchangesinchemicalconditions.Therefore,itisreasonablethatthereversiblewettabilityswitchingpropertiesoftheas-preparedfilmsexhibitlong-termdurability.
Insummary,thewettabilityofalignedZnOnanorodfilmswasinvestigated.Reversiblesuper-hydrophobicitytosuper-hydrophi-licitytransitionwasobservedandintelligentlycontrolledbyalternationofUVilluminationanddarkstorage.Thisreversibletransitionofsurfacewettabilityisacompletelynewconceptforpreparingsmartfilms.Thisstrategycanbeextendedtootherstimuli-responsivesurfaceswithsimilarnanostructureandhigherstability,whichiscertainlysignificantforfutureindustrialapplica-tions.
Acknowledgment.TheauthorsthanktheStateKeyProjectforFundamentalResearch(G1999064504)andtheSpecialResearchFoundationoftheNationalNaturalScienceFoundationofChina(29992530,20/25/02)forcontinuingfinancialsupport.
References
(1)(a)(2)D.;Wenzel,R.N.Ind.Eng.Chem.1936,28,988-994.(b)Cassie,A.B.
(3)Parker,Baxter,(a)A.R.;S.Trans.Lawrence,FaradayC.R.SocNature.19442001,40,,414546-551.2127.Onda,Erbil,(b)T.;H.Y.;O¨ner,Shibuichi,S.;Satoh,N.;Tsujii,K.Langmuir,33-34.
1996,12,2125-DemirelD.;McCarthy,A.L.;Avc?T.Y.;J.LangmuirMert,O.Science2000,162003,7777,299-7782.,1377(c)-(4)1380.
Feng,L.;Li,S.H.;Li,Y.S.;Li,H.J.;Zhang,L.J.;Zhai,J.;(5)Liu,(a)B.Q.;Jiang,L.;Zhu,D.B.AdV.Mater.2002,14,1857Song,-1860.Y.L.;
Kitamura,Wang,R.;Hashimoto,K.;Fujishima,A.;Chikuni,M.;Kojima,E.;
432.A.;Shimohigoshi,M.;Watanabe,T.Nature1997,388,431-(6)K.(a)J.(b)Phys.Wang,Chem.R.;BSakai,1999,N.;103Fujishima,,2188-2194.A.;Watanabe,T.;Hashimoto,(7)(b)Bico,(a)Bico,J.;J.;Tordeux,Thiele,U.;C.;QueQue′re′,D.Europhys.Lett.2001,55,214-220.
1626.Ichimura,K.;Oh,S.K.;′re′Nakagawa,,D.ColloidsM.Surf.,A2002,206,41-46.Choi371I.(b)S.;Lahann,Hoffer,J.;S.;Mitragotri,Science2000,288,1624-Somorjai,S.;Tran,T.;Kaido,H.;Sundaram,J.;Macromolecules-374.(c)Liang,L.;Feng,X.;G.D.;A.;Liu,Langer,J.;Rieke,R.P.ScienceC.;Fryxell,2003,299,H.;Pispas,S.;Hadjichristidis,1998,31,7845N.;-Neophytides,7850.(d)Anastasiadis,G.E.S.MacromoleculesS.H.;Retsos,2003,(8)36(a),1994Koinuma,Tang,-Z.1999.
Pan,Huang,Z.W.;H.;K.;Dai,Segawa,Wong,Z.R.;Wang,Y.G.Appl.K.L.;Yu,P.;Kawasaki,M.;Ohtomo,A.;
Z.Phys.L.ScienceLett.20011998,,29172,,3270-3272.(b)(9)R.;(a)Russo,M.R.;H.;Yang,Mao,S.;P.ScienceFeick,H.;Yan,H.;Wu,Y.;Kind,1947-H.;1949.Weber,(c)Am.Tian,Goldberger,Chem.Z.Soc.R.;Voigt,J.A.;Liu,2001J.;Mckenzie,,292,1897B.;-1895.
Mcdermott,M.J.J.
J.;Kim,2002F.;,124Johnson,,12954J.-C.;12955.Zhang,(b)Y.;Greene,Saykally,L.E.;Law,M.;(10)P.Sakohara,Angew.Chem.S.;Tickanen,,Int.EdL..2003D.;,R.J.;Yang,Anderson,42,3031-M.3034.
A.J.Phys.Chem.1992,
(11)96(12)Fujihara,,11086Puntes,V.S.;-11091.

F.;Sasaki,Krishnan,C.;K.Kimura,M.;Alivisatos,T.Appl.Surf.A.P.Sci.Science20012001,180,291,341,2115-350.-(13)2117.
Vayssieres,L.;(14)13Keis,K.;Hagfeldt,A.;Lindquist,S.E.Chem.Mater.2001,
Li,,M.;4395Zhai,-4398.
J.;Liu,H.;Song,(15)BSun,2003Y.L.;Jiang,L.;Zhu,D.B.J.Phys.Chem.
R.,D.;107Nakajima,,9954-957.
A.;Fujishima,(16)Phys.Wang,Chem.1995,344L.,Q.;B237Baer,2001,-350.
D.105A.;Watanabe,T.;Hashimoto,K.J.
R.;,1984Engelhard,-1990.
M.H.;Shultz,A.N.Surf.Sci.
JA038636O
J.AM.CHEM.SOC.
9
VOL.126,NO.1,200463
百度搜索“爱华网”,专业资料,生活学习,尽在爱华网
爱华网
