短时傅里叶变换 短时傅里叶变换-基本内容

短时傅里叶变换(STFT,short-time Fourier transform,或 short-term Fourier transform))是和傅里叶变换相关的一种数学变换,用以确定时变信号其局部区域正弦波的频率与相位。短时傅里叶变换用来分析分段平稳信号或者近似平稳信号犹可,但是对于非平稳信号,当信号变化剧烈时,要求窗函数有较高的时间分辨率;而波形变化比较平缓的时刻,主要是低频 信号,则要求窗函数有较高的频率分辨率。短时傅里叶变换使用一个固定的窗函数,窗函数一旦确定了以后,其形状就不再发生改变,短时傅里叶变换的分辨率也就确定了。

短时傅里叶变换 短时傅里叶变换-基本内容

短时傅里叶变换_短时傅里叶变换 -基本内容

短时傅里叶变换(STFT,short-time Fourier transform,或 short-term Fourier transform))是和傅里叶变换相关的一种数学变换,用以确定时变信号其局部区域正弦波的频率与相位。

它的思想是:选择一个时频局部化的窗函数,假定分析窗函数g(t)在一个短时间间隔内是平稳(伪平稳)的,移动窗函数,使f(t)g(t)在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。短时傅里叶变换使用一个固定的窗函数,窗函数一旦确定了以后,其形状就不再发生改变,短时傅里叶变换的分辨率也就确定了。如果要改变分辨率,则需要重新选择窗函数。短时傅里叶变换用来分析分段平稳信号或者近似平稳信号犹可,但是对于非平稳信号,当信号变化剧烈时,要求窗函数有较高的时间分辨率;而波形变化比较平缓的时刻,主要是低频 信号,则要求窗函数有较高的频率分辨率。短时傅里叶变换不能兼顾频率与时间分辨率的需求。短时傅里叶变换窗函数受到W.Heisenberg不确定准则的限制,时频窗的面积不小于2。这也就从另一个侧面说明了短时傅里叶变换窗函数的时间与频率分辨率不能同时达到 最优。

  

爱华网本文地址 » http://www.aihuau.com/a/8103290103/45670.html

更多阅读

多项式乘法与快速傅里叶变换 链表多项式乘法

前言经典算法研究系列,已经写到第十五章了,本章,咱们来介绍多项式的乘法以及快速傅里叶变换算法。本博客之前也已详细介绍过离散傅里叶变换(请参考:十、从头到尾彻底理解傅里叶变换算法、上,及十、从头到尾彻底理解傅里叶变换算法、下),这

傅里叶变换的理解 傅里叶变换有什么用

傅里叶变换:数字音频播放器MP3、图片压缩JPEG和苹果智能语音助手Siri背后的数学九年前,在学校的物理数学课的课堂上,我的老师为我们讲授了一种新方法,至今仍印象深刻。毫不夸张地说,数学理论发现迄今最广泛的应用就是这一方法了,其涵盖的

离散傅里叶变换的物理含义 离散傅里叶变换性质

不知道为什么,我们的教科书总是不把读者最希望了解的东西告诉他们。这里可能有专业与非专业的区别。浸淫多年的专家认为必须让读者理解的东西其实读者并不关心,读者想要知道的简单答案课本上就是不说。以离散傅里叶变换为例,许多书都会

我对傅里叶变换(DFT,FFT)的理解(4) dft离散傅里叶变换

傅里叶变换在不同信号形式下有不同的变换方法,前一篇我讲了几种信号形式的傅里叶变换和它们之间的关系.反正我不太关心前三种形式的傅里叶变换.数字信号处理其实主要就是处理最后一种形式,即在时域和频域上都是离散的周期信号的傅里

傅里叶变换的Matlab代码与注释 matlab代码注释

傅里叶变换的Matlab代码与注释 收藏%Data 为一维采样数组% Fs 为采样频率Data_length=length(Data);% DFT需要的采样点数为2的幂指数,但是输入的点数有可能是一个一般整数,于是找一个离指定点数最近的2的幂指数用来做DFTNFFT = 2^next

声明:《短时傅里叶变换 短时傅里叶变换-基本内容》为网友你的她不是我分享!如侵犯到您的合法权益请联系我们删除