八大行星 八大行星 八大行星-概述,八大行星-行星定义

八大行星特指太阳系的八个行星,按照离太阳的距离从小到大,它们依次为水星、金星、地球、火星、木星、土星、天王星、海王星。八大行星自转方向多数也和公转方向一致。只有金星和天王星两个例外。金星自转方向与公转方向相反。而天王星是在轨道上横滚的。而曾经被认为是“九大行星”之一的冥王星于2006年8月24日被定义为“矮行星”。什么是行星:一是必须围绕恒星运转的天体;二是质量足够大,能依靠自身引力使天体呈圆球状;三是其轨道附近应该没有其他物体。按这样的划分,太阳系的行星就只有水、金、地、火、木、土,加上天王、海王星这八颗。与2006年之前提到的九大行星概念不同,在在2006年8月24日于布拉格举行的第26届国际天文联会中通过的第5号决议中,冥王星被划为矮行星,从太阳系九大行星中被除名。必须是围绕恒星运转的天体――冥王星相符。质量足够大,能依靠自身引力使天体呈圆球状――冥王星不相符,冥王星比月球还要小,还不是圆球状,是椭圆状。

八大行星的直径_八大行星 -概述

八大行星,指的是环绕太阳运动且质量够大的八个天体。它们分别是:水星、金星、地球、火星、木星、土星、天王星和海王星。与2006年之前提到的九大行星概念不同,在在2006年8月24日于布拉格举行的第26界国际天文联会中通过的第5号决议中,冥王星被划为矮行星,从太阳系九大行星中被除名。
2006年8月24日于布拉格举行的第26界国际天文联会中通过的第5号决议中,投票5号决议,部分通过新的行星定义,冥王星被排除在行星行列之外,而将其列入“矮行星”。新的天文发现不断使“九大行星”的传统观念受到质疑。
天文学家先后发现冥王星与太阳系其他行星的一些不同之处。冥王星所处的轨道在海王星之外,属于太阳系外围的柯伊伯带,这个区域一直是太阳系小行星和彗星诞生的地方。20世纪90年代以来,天文学家发现柯伊伯带有更多围绕太阳运行的大天体。比如,美国天文学家布朗发现的“2003ub313”,就是一个直径和质量都超过冥王星的天体。
国际天文学联合会大会放弃将冥王星之外的太阳系八大行星称为“经典行星”的说法,从而确认太阳系只有8颗行星,冥王星被降级为入“矮行星”。此前盛传的第一种方案中提出了太阳系另外增加3颗二级行星的计划流产。数十年来,科学家普遍认为太阳系有九大行星,但随着一颗比冥王星更大、更远的天体的发现,使得冥王星大行星地位的争论愈演愈烈。一是由于其发现的过程是基于一个错误的理论;二是由于当初将其质量估算错了,误将其纳入到了大行星的行列。因此在国际天文学联合会大会上,是否要给冥王星“正名”成为了大会的焦点,为此,天文学家给出了各种方案。
1930年美国天文学家汤博发现冥王星,当时错估了冥王星的质量,以为冥王星比地球还大,所以命名为大行星。然而,经过近30年的进一步观测,发现它的直径只有2300公里,比月球还要小,等到冥王星的大小被确认,“冥王星是大行星”早已被写入教科书,以后也就将错就错了。
冥王星是目前太阳系中最远的行星,其轨道最扁。冥王星的质量远比其他行星小,甚至在卫星世界中它也只能排在第七、第八位左右。冥王星的表面温度很低,因而它上面绝大八大行星

多数物质只能是固态或液态。

八大行星的直径_八大行星 -行星定义

2006年8月24日于布拉格举行的第26界国际天文联会中,将就新的行星定义决议草案进行讨论和表决。根据这一决议草案提出的定义,目前太阳系有12颗行星,将来这个“阵容”还可能扩大。
美国天文学会发言人斯蒂芬?马兰博士向说,新的行星定义包括两点:一是行星必须是围绕恒星运转的天体;二是行星的质量必须足够大,它自身的重力必须和表面力平衡使其形状呈圆球。一般来说,行星的直径必须在800公里以上,质量必须在50亿亿吨以上。
按照这一定义,目前太阳系内有12颗行星,分别是:水星、金星、地球、火星、谷神星、木星、土星、天王星、海王星、冥王星、原先被认为是冥王星卫星的“卡戎”和一颗暂时编号为“2003UB313”的天体。国际天文学联合会下属的行星定义委员会称,不排除将来太阳系中会有更多符合标准的天体被列为行星。目前在天文学家的观测名单上有可能符合行星定义的太阳系内天体就有10颗以上。
在新的行星标准之下,行星定义委员会还确定了一个新的次级定义――“类冥王星”。这是指轨道在海王星之外、围绕太阳运转周期在200年以上的行星。在符合新定义的12颗太阳系行星中,冥王星、“卡戎”和“2003UB313”都属于“类冥王星”。
天文学家认为,“类冥王星”的轨道通常不是规则的圆形,而是偏心率较大的椭圆形。这类

行星的来源,很可能与太阳系内其他行星不同。随着观测手段的进步,天文学家还有可能在太阳系边缘发现更多大天体。未来太阳系的行星名单如果继续扩大,新增的也将是“类冥王星”。

八大行星的直径_八大行星 -发现史

没有人知道我们的祖先是从何时开始仰望星空,也不会有人记得到底是谁首次发现了金、木、水、火、土这5颗行星。可以相信,它们明亮的身影在星空中穿行时,曾经引起地球上不同地方、不同年代许多人的注意。
1609年,伽利略将望远镜指向天空,开启了现代天文学的时代。1781年3月13日,英国天文学家赫歇尔注意到了双子座中的一个天体,最终确认它是一颗行星。它以希腊神话中天空之神乌剌诺斯命名,中文称为天王星。天王星在合适条件下用肉眼也可以观察到,此前的天文学家曾经看到并记录它,但没有想到这颗位置变化不明显的暗淡星星会是一颗行星。
发现天王星后不久,人们就计算出了它的轨道,却发现观测数据与理论预测的总有差异。英国科学家亚当斯和法国科学家勒威耶分别提出,这可能是因为还有一颗未知的行星,它的引力导致天王星轨道出现偏差。他们还计算出了未知行星应该在什么地方。
1846年9月23日,德国天文学家伽勒在预测的位置上找到了一颗新行星。这颗行星的颜色好像海水,因而以海洋之神尼普顿命名,中文称为海王星。海王星的引力部分解释了天王星轨道的误差,但不能完全解决问题,天文学家相信海王星轨道之外还存在一颗未知行星。
但这颗神秘行星太远太暗了,经过几代人近一个世纪的努力,它才于1930年2月18日出现在美国天文学家汤博的视野里。这颗远离太阳光辉的星星被赋予了地狱之神普卢托的名字,中文称为冥王星。至此,“太阳系九大行星”的格局坚持了70多年。
然而冥王星是一个异类。它个头太小,轨道太扁,而且轨道平面相对于地球轨道平面有很大的倾斜,而不像其他行星轨道基本上与地球轨道位于同一平面中。这些特征使其行星地位相当不稳定,总是有人认为应该把它开除出行星家族。近几十年来陆续发现的许多柯伊伯带天体,使这个问题进一步激化。

柯伊伯带是太阳系外围的一个区域,那里有许多小天体绕太阳运行,可能是太阳系早期物质形成行星之后的剩余材料。第一个柯伊伯带天体于1992年被发现,现在其家族成员已经增加到几百个。
从2000年起,柯伊伯带天体直径最大记录不断被刷新。2004年,当一个叫“塞德娜”的天体以直径1700公里的尺寸直逼冥王星时,情况已经变得难以收拾。忍无可忍的国际天文学联合会成立了一个专门委员会来重新讨论行星的概念,看看是把这些新发现的大家伙接纳进行星家族,还是索性剥夺冥王星的行星地位。
2005年7月,昵称齐娜的“2003UB313”被介绍给公众,它是70多年来首次在太阳系内发现的比冥王星更大的天体。这是推动行星概念被重新定义的决定性发现:事情已经到了非解决不可的程度。
天文学家目前在太阳系内寻找新行星的方法,实质上与前辈们所用的方法相同:把恒星假设为静止,然后以它为背景,寻找运动着的行星。不过现在初步分析交由计算机去做,人只需对计算机挑出来的可疑目标进行进一步观察。

八大行星的直径_八大行星 -记忆方法

八大行星的通常记法是:水金地火木土天海。虽然有些长但是很好记。
还有一种记法,虽然有些牵强,但是记忆保存的时间很长:水晶球,火烧木,变成了土,天涯海角。
水:水星
晶:“金”的谐音,指金星
球:地球
火烧木:“火”指火星,“木”指木星
变成了土:“土”指土星
天涯海角:“天”指天王星,“海”指海王星或者是金木水火土加天海王加日月球。

八大行星的直径_八大行星 -水星

英文名:Mercury
水星最接近太阳,是太阳系中最小最轻的行星。常和太阳同时出没,中国古代称它为“辰星”。水星在直径上小于木卫三和土卫六。

基本参数

轨道半长径:5791万千米(0.38天文单位)公转周期:87.70天
自转方向:自西向东逆时针旋转
平均轨道速度:47.89千米/每秒
轨道偏心率:0.206
轨道倾角:7.0度
行星半径:2440千米(赤道)
质量(地球质量=1):0.0553
密度:5.43克/立方厘米
自转周期:58.653485日
卫星数:无(至今未发现)
逃逸速度:4.3km/s
公转轨道:距太阳57,910,000千米(0.38天文单位)

名称来源

在古罗马神话中Mercury是商业、旅行和偷窃之神,即古希腊神话中的赫耳墨斯,为众神传信的神,或许由于水星在空中移动得快,才使它得到这个名字。

探测历史

发现:早在公元前3000年的苏美尔时代,人们便发现了水星,古希腊人赋于它两个名字:当它初现于清晨时称为阿波罗,当它闪烁于夜空时称为赫耳墨斯。不过,古希腊天文学家们知道这两个名字实际上指的是同一颗星星,赫拉克赖脱(公元前5世纪之希腊哲学家)甚至认为水星与金星并非环绕地球,而是环绕着太阳在运行。
访问:至今仅有水手10号探测器于1973年和1974年三次造访水星。它仅仅勘测了水星表面的45%(并且很不幸运,由于水星太靠近太阳,以致于哈勃望远镜无法对它进行安全的摄像)。
在1962年前,人们一直认为水星自转一周与公转一周的时间是相同的,从而使面对太阳的那一面恒定不变。这与月球总是以相同的半面朝向地球很相似。但在1965年,通过多普勒雷达的观察发现这种理论是错误的。我们已得知水星在公转二周的同时自转三周,只有金星是太阳系中唯一已知的公转周期与自转周期共动比率小于1:1的天体,水星并不是。
由于上述情况及水星轨道极度偏离正圆,将使得水星上的观察者看到非常奇特的景像,处于某些经度的观察者会看到当太阳升起后,随着它朝向天顶缓慢移动,将逐渐明显地增大尺寸。太阳将在天顶停顿下来,经过短暂的倒退过程,再次停顿,然后继续它通往地平线的旅程,同时明显地缩小。在此期间,星星们将以三倍快的速度划过苍空。在水星表面另一些地点的观察者将看到不同的但一样是异乎寻常的天体运动。

近日点轨道

水星的轨道偏离正圆程度很大,它在轨道近日点所具有的围绕太阳的缓慢岁差现象,被称为“水星近日点轨道进动”。(岁差:地轴进动引起春分点向西缓慢运行,速度每年0.2",约25800年运行一周,使回归年比恒星年短的现象。分日岁差和行星岁差两种,后者是由行星引力产生的黄道面变动引起的。)在十九世纪,天文学家们对水星的轨道半径进行了非常仔细的观察,但无法运用牛顿力学对此作出适当的解释。存在于实际观察到的值与预告值之间的细微差异是一个次要(每千年相差七分之一度)但困扰了天文学家们数十年的问题。有人认为在靠近水星的轨道上存在着另一颗行星(有时被称作Vulcan,“祝融星”),由此来解释这种差异,结果最终的答案颇有戏剧性:爱因斯坦的广义相对论。在人们接受认可此理论的早期,水星运行的正确预告是一个十分重要的因素。(水星因太阳的引力场而绕其公转,而太阳引力场极其巨大,据广义相对论观点,质量产生引力场,引力场又可看成质量,所以巨引力场可看作质量,产生小引力场,使其公转轨道偏离。类似于电磁波的发散,变化的磁场产生电场,变化的电场产生磁场,传向远方。--译注)

温差

水星上的温差是整个太阳系中最大的,温度变化的范围为90开到700开。相比之下,金星的温度略高些,但更为稳定。

大气表面地貌

事实上水星的大气很稀薄,由太阳风带来的被破坏的原子构成。水星温度如此之高,使得这些原子迅速地散逸至太空中,这样与地球和金星稳定的大气相比,水星的大气频繁地被补充更换。
水星的表面表现出巨大的急斜面,有些达到几百千米长,三千米高。有些横处于环形山的外环处,而另一些急斜面的面貌表明他们是受压缩而形成的。据估计,水星表面收缩了大约0.1%(或在星球半径上递减了大约1千米)。
水星上最大的地貌特征之一是Caloris盆地,直径约为1300千米,人们认为它与月球上最大的盆地Maria相似。如同月球的盆地,Caloris盆地很有可能形成于太阳系早期的大碰撞中,那次碰撞大概同时造成了星球另一面正对盆地处奇特的地形。
除了布满陨石坑的地形,水星也有相对平坦的平原,有些也许是古代火山运动的结果,但另一些大概是陨石所形成的喷出物沉积的结果。
水手号探测器的数据提供了一些水星上火山活动的初步迹象,但我们需要更多的资料来确认。
令人惊讶的是,水星北极点的雷达扫描(一处未被水手10号勘测的区域)显示出在一些陨石坑的被完好保护的隐蔽处存在冰的迹象。

其他性质

水星在许多方面与月球相似,它的表面有许多陨石坑而且十分古老;它也没有板块运动。另一方面,水星的密度比月球大得多,(水星5.43克/立方厘米月球3.34克/立方厘米)。水星是太阳系中仅次于地球,密度第二大的天体。事实上地球的密度高部分源于万有引力的压缩;若非如此,水星的密度将大于地球,这表明水星的铁质核心比地球的相对要大些,很有可能构成了行星的大部分。因此,相对而言,水星仅有一圈薄薄的硅酸盐地幔和地壳。
巨大的铁质核心半径为1800到1900千米,是水星内部的支配者。而硅酸盐外壳仅有500到600千米厚,至少有一部分核心大概成熔融状。
水星有一个小型磁场,磁场强度约为地球的1%。
至今未发现水星有卫星。
通常通过双筒望远镜甚至直接用肉眼便可观察到水星,但它总是十分靠近太阳,在曙暮光中难以看到。MikeHarvey的行星寻找图表指出此时水星在天空中的位置(及其他行星的位置),再由“星光灿烂”这个天象程序作更多更细致的定制。

八大行星的直径_八大行星 -金星

英文名:Venus
八大行星之一,为太阳系中第六大行星,中国古代称之为太白或太白金星。它有时是晨星,黎明出现在东方天空,被称为“启明”;有时又是昏星,黄昏后出现在西方天空,被称为“长庚”。

名称来源

金星是全天中除太阳外最亮的星,犹如一颗耀眼的钻石,于是古希腊人称它为阿佛洛狄忒--爱与美的女神,而罗马人则称它为维纳斯--爱神。

基本参数

自转方向:自东向西
公转周期:224.701天
平均轨道速度:35.03千米/每秒
轨道偏心率:0.007
轨道倾角:3.4度
行星半径:6,051.9千米(赤道)
直径:12105千米
质量(地球质量=1):0.8150
密度:5.24克/立方厘米
卫星数量:0
公转半径:108,208,930km(0.72天文单位)
表面面积:4.6亿平方千米
自转时间:243.02天
逃逸速度:10.4千米/秒

探测历史

发现:金星在史前就已被人所知晓。除了太阳与月亮外,它是最亮的一颗。
金星是一颗内层行星,从地球用望远镜观察它的话,会发现它有位相变化。伽利略对此现象的观察是赞成哥白尼的有关太阳系的太阳中心说的重要证据。
访问:第一艘访问金星的飞行器是1962年的水手2号。随后,它又陆续被其他飞行器:金星先锋号,苏联尊严7号、尊严9号访问。

自转

金星的自转非常不同寻常,一方面它很慢(金星日相当于243个地球日,比金星年稍长一些),另一方面它是倒转的。另外,金星自转周期又与它的轨道周期同步,这是不是共鸣效果或只是一个巧合就不得而知了。

大气及表面

金星的大气压力为90个标准大气压(相当于地球海洋深1千米处的压力),大气大多由二氧化碳组成,也有几层由硫酸组成的厚数千米的云层。这些云层挡住了我们对金星表面的观察,使得它看来非常模糊。这稠密的大气也产生了温室效应,使金星表面温度上升400度,超过了740开(足以使铅条熔化)。金星表面自然比水星表面热,虽然金星比水星离太阳要远两倍。云层顶端有强风,大约每小时350千米,但表面风速却很慢,每小时几千米不到。

其他性质

金星有时被誉为地球的姐妹星,在有些方面它们非常相像:
--金星比地球略微小一些(95%的地球直径,80%的地球质量)。
--在相对年轻的表面都有一些环形山口。
--它们的密度与化学组成都十分类似。
由于这些相似点,有时认为在它厚厚的云层下面金星可能与地球非常相像,可能有生命的存在。但是不幸的是,许多有关金星的深层次研究表明,在许多方面金星与地球有本质的不同。

八大行星的直径_八大行星 -地球

英文:Earth
地球是距太阳第三颗,也是第五大行星。

基本参数

轨道半径:149,600,000
千米(离太阳1.00天文单位)
赤道半径:6,378.1千米
平均轨道速度:29.79千米/每秒
轨道偏心率:0.0167
轨道倾角:0°
质量:5.9736e24千克
赤道引力(地球=1):1.00
逃逸速度(公里/秒):11.2
自转周期(日):0.9973
卫星数:1
公转周期(日):365.2422
黄赤交角(度):23.5
反照率:0.30
自转方向:自西向东

名称来源

地球是唯一一个不是从希腊或罗马神话中得到的名字。Earth一词来自于古英语及日耳曼语。这里当然有许多其他语言的命名。在罗马神话中,地球女神叫Tellus-肥沃的土地(希腊语:Gaia,大地母亲)
直到16世纪哥白尼时代人们才明白地球只是一颗行星。
地球,当然不需要飞行器即可被观测,然而我们直到二十世纪才有了整个行星的地图。由空间拍到的图片应具有合理的重要性;举例来说,它们大大帮助了气象预报及暴风雨跟踪预报。

地球的卫星

地球的天然卫星是月球,也是地球唯一的天然卫星。月球是最明显的天然卫星的例子。在太阳系里,除水星和金星外,其他行星都有天然卫星。月球的年龄大约有46亿年。月球有壳、幔、核等分层结构。最外层的月壳平均厚度约为60-65公里。月壳下面到1000公里深度是月幔,它占了月球的大部分体积。月幔下面是月核,月核的温度约为1000度,很可能是熔融状态的。月球直径约3476公里,是地球的3/11。体积只有地球的1/49,质量约7350亿亿吨,相当于地球质量的1/81,月面的重力差不多相当于地球重力的1/6。
地球与月球的交互作用使地球的自转每世纪减缓了2毫秒。

八大行星的直径_八大行星 -火星

英文名:Mars
火星为距太阳第四近,也是太阳系中第七大行星;中国古代称“荧惑星”。

基本参数

轨道半径:22794万千米(1.52天文单位)
公转周期:686.98日
平均轨道速度:24.13千米/每秒
轨道偏心率:0.093
轨道倾角:1.8度
行星半径:3398千米(赤道)
质量(地球质量=1):0.1074
密度:3.94克/立方厘米
自转周期:1.026日
自转方向:自西向东
卫星数:2
公转轨道:离太阳227,940,000千米(1.52天文单位)

名称来源

火星(希腊语:阿瑞斯)被称为战神。这或许是由于它鲜红的颜色而得来的;火星有时被称为“红色行星”。(趣记:在罗马人之前,古希腊人曾把火星作为农耕之神来供奉。而好侵略扩张的罗马人却把火星作为战争的象征)而“三月”的名字也是得自于火星。

探测历史

发现:火星在史前时代就已经为人类所知。由于它被认为是太阳系中人类最好的住所(除地球外),它受到科幻小说家们的喜爱。但可惜的是那条著名的被Lowell“看见”的“运河”以及其他一些什么的,都只是如Barsoomian公主们一样是虚构的。
访问:第一次对火星的探测是由水手4号飞行器在1965年进行的。人们接连又作了几次尝试,包括1976年的两艘海盗号飞行器。此后,经过长达20年的间隙,在1997年的七月四日,火星探路者号终于成功地登上火星。

大气与两极

火星的那层薄薄的大气主要是由余留下的二氧化碳(95.3%)加上氮气(2.7%)、氩气(1.6%)和微量的氧气(0.15%)和水汽(0.03%)组成的。火星表面的平均大气压强仅为大约7毫巴(比地球上的1%还小),但它随着高度的变化而变化,在盆地的最深处可高达9毫巴,而在OlympusMons的顶端却只有1毫巴。但是它也足以支持偶尔整月席卷整颗行星的飓风和大风暴。火星那层薄薄的大气层虽然也能制造温室效应,但那些仅能提高其表面5K的温度,比我们所知道的金星和地球的少得多。
火星的两极永久地被固态二氧化碳(干冰)覆盖着。这个冰罩的结构是层叠式的,它是由冰层与变化着的二氧化碳层轮流叠加而成。在北部的夏天,二氧化碳完全升华,留下剩余的冰水层。由于南部的二氧化碳从没有完全消失过,所以我们无法知道在南部的冰层下是否也存在着冰水层。这种现象的原因还不知道,但或许是由于火星赤道面与其运行轨道之间的夹角的长期变化引起气候的变化造成的。或许在火星表面下较深处也有水存在。这种因季节变化而产生的两极覆盖层的变化使火星的气压改变了25%左右(由海盗号测量出)。
但是通过哈博望远镜的观察却表明海盗号当时勘测时的环境并非是典型的情况。火星的大气似乎比海盗号勘测出的更冷、更干了(详细情况请看来自STScI站点)。

表面地形

除地球外,火星是具有最多各种有趣地形的固态表面行星。其中不乏一些壮观的地形:
-奥林匹斯山脉:它在地表上的高度有24千米(78000英尺),是太阳系中最大的山脉。它的基座直径超过500千米,并由一座高达6千米(20000英尺)的悬崖环绕着;
-Tharsis:火星表面的一个巨大凸起,有大约4000千米宽,10千米高;
-VallesMarineris:深2至7千米,长为4000千米的峡谷群;
-HellasPlanitia:处于南半球,6000多米深,直径为2000千米的冲击环形山。
火星的表面有很多年代已久的环形山。但是也有不少形成不久的山谷、山脊、小山及平原。
在火星的南半球,有着与月球上相似的曲型的环状高地。相反的,它的北半球大多由新近形成的低平的平原组成。这些平原的形成过程十分复杂。南北边界上出现几千米的巨大高度变化。形成南北地势巨大差异以及边界地区高度剧变的原因还不得而知(有人推测这是由于火星外层物增加的一瞬间产生的巨大作用力所形成的)。一些科学家开始怀疑那些陡峭的高山是否在它原先的地方。这个疑点将由“火星全球勘测员”来解决。
火星上曾有过洪水,地面上也有一些小河道,十分清楚地证明了许多地方曾受到侵蚀。在过去,火星表面存在过干净的水,甚至可能有过大湖和海洋。但是这些东西看来只存在很短的时间,而且据估计距今也有大约四十亿年了。(VallesMarneris不是由流水通过而形成的。它是由于外壳的伸展和撞击,伴随着Tharsis凸起而生成的)。
在火星的早期,它与地球十分相似。像地球一样,火星上几乎所有的二氧化碳都被转化为含碳的岩石。但由于缺少地球的板块运动,火星无法使二氧化碳再次循环到它的大气中,从而无法产生意义重大的温室效应。因此,即使把它拉到与地球距太阳同等距离的位置,火星表面的温度仍比地球上的冷得多。

内部情况

火星的内部情况只是依靠它的表面情况资料和有关的大量数据来推断的。一般认为它的核心是半径为1700千米的高密度物质组成;外包一层熔岩,它比地球的地幔更稠些;最外层是一层薄薄的外壳。相对于其他固态行星而言,火星的密度较低,这表明,火星核中的铁(镁和硫化铁)可能含带较多的硫。
如同水星和月球,火星也缺乏活跃的板块运动;没有迹象表明火星发生过能造成像地球般如此多褶皱山系的地壳平移活动。由于没有横向的移动,在地壳下的巨热地带相对于地面处于静止状态。再加之地面的轻微引力,造成了Tharis凸起和巨大的火山。但是,人们却未发现火山有过活动的迹象。虽然,火星可能曾发生过很多火山运动,可它看来从未有过任何板块运动。

关于火星生命

海盗号尝试过作实验去决定火星上是否有生命,结果是否定的。但乐观派们指出,只有两个小样本是合格的,并且又并非来自最好的地方。以后的火星探索者们将继续更多的实验。
一块小陨石(SNC陨石)被认为是来自于火星的。
1996年8月6日,戴维・朱开(DavidMcKay)等人宣称,在火星的陨石中首次发现有有机物的构成。那作者甚至说这种构成加上一些其他从陨石中得到的矿物,可以成为火星古微生物的证明。
如此惊人的结论,但它却没有使有外星人存在这一结论成立。自以戴维・朱开发表意见后,一些反对者的研究也被发布。但任何结论都应当“言之有理,言之有据”。在没有十分肯定宣布结论之前仍有许多事要做。

其他性质

在火星的热带地区有很大一片引力微弱的地方。这是由火星全球勘测员在它进入火星轨道时所获得的意外发现。它们可能是早期外壳消失时所遣留下的。这或许对研究火星的内部结构、过去的气压情况,甚至是古生命存在的可能都十分有用。
在夜空中,用肉眼很容易看见火星。由于它离地球十分近,所以显得很明亮。迈克・哈卫的行星寻找图表显示了火星以及其它行星在天空中的位置。越来越多的细节,越来越好的图表将被如星光灿烂这样的天文程序来发现和完成。
火星的轨道是显著的椭圆形。因此,在接受太阳照射的地方,近日点和远日点之间的温差将近30摄氏度。这对火星的气候产生巨大的影响。火星上的平均温度大约为218K(-55℃,-67华氏度),但却具有从冬天的140K(-133℃,-207华氏度)到夏日白天的将近300K(27℃,80华氏度)的跨度。尽管火星比地球小得多,但它的表面积却相当于地球表面的陆地面积。

八大行星的直径_八大行星 -木星

英文名:Jupiter
木星是离太阳第五颗行星,而且是最大的一颗,是所有其他的7颗行星的总和质量的2.5倍,是地球的318倍,体积为地球的1316倍。被称为“行星之王”。

基本参数

公转轨道:距太阳778,330,000千米(5.20天文单位)
自转方向:自西向东
行星半径:71,492千米(赤道),地球的11倍
质量:1.900e27千克
表面重力加速度:23.12米每二次方秒
逃逸速度:60.2千米/秒
表面温度:表面有效温度值为-168℃(地球观测值为-139℃)
卫星数:66颗

名称来源

木星Jupiter(为朱庇特,罗马神话中的众神之王,即希腊神话中的宙斯)

探测历史

发现:木星是天空中第四亮的物体(次于太阳,月球和金星;有时候火星更亮一些),早在史前木星就已被人类所知晓。根据伽利略1610年对木星四颗卫星:木卫一,木卫二,木卫三和木卫四(现常被称作伽利略卫星)的观察,它们是不以地球为中心运转的第一个发现,也是赞同哥白尼的日心说的有关行星运动的主要依据;由于伽利略直言不讳地支持哥白尼的理论而被宗教裁判所逮捕,并被强迫放弃自己的信仰,关在监狱中度过了余生。
访问:木星在1973年被先锋10号首次拜访,后来又陆续被先锋11号,旅行者1号,旅行者2号和Ulysses号考查。伽利略号飞行器正在环绕木星运行,并将在以后的两年中不断发回它的有关数据。

成分

木星由90%的氢和10%的氦(原子数之比,75/25%的质比)及微量的甲烷、水、氨水和“石头”组成。这与形成整个太阳系的原始的太阳系星云的组成十分相似。土星有一个类似的组成,但天王星与海王星的组成中,氢和氦的量就少一些了。
气态行星没有实体表面,它们的气态物质密度只是由深度的变大而不断加大(我们从它们表面相当于1个大气压处开始算它们的半径和直径)。我们所看到的通常是大气中云层的顶端,压强比1个大气压略高。
内核上则是大部分的行星物质集结地,以液态金属氢的形式存在。这些木星上最普通的形式基础可能只在40亿巴压强下才存在,木星内部就是这种环境(土星也是)。液态金属氢由离子化的质子与电子组成(类似于太阳的内部,不过温度低多了)。在木星内部的温度压强下,氢气是液态的,而非气态,这使它成为了木星磁场的电子指挥者与根源。同样在这一层也可能含有一些氦和微量的“冰”。
木星可能有一个石质的内核,相当于10-15个地球的质量。
最外层主要由普通的氢气与氦气分子组成,它们在内部是液体,而在较外部则气体化了,我们所能看到的就是这深邃的一层的较高处。水、二氧化碳、甲烷及其他一些简单气体分子在此处也有一点儿。
云层的三个明显分层中被认为存在着氨冰,铵水硫化物和冰水混合物。然而,来自伽利略号的证明的初步结果表明云层中这些物质极其稀少(一个仪器看来已检测了最外层,另一个同时可能已检测了第二外层)。但这次证明的地表位置十分不同寻常--基于地球的望远镜观察及更多的来自伽利略号轨道,飞船观察提示这次证明所选的区域很可能是那时候木星表面最温暖又是云层最少的地区。

表面飓风

木星和其他气态行星表面有高速飓风,并被限制在狭小的纬度范围内,在连近纬度的风吹的方向又与其相反。这些带中轻微的化学成分与温度变化造成了多彩的地表带,支配着行星的外貌。光亮的表面带被称作区(zones),暗的叫作带(belts)。这些木星上的带子很早就被人们知道了,但带子边界地带的漩涡则由旅行者号飞船第一次发现。伽利略号飞船发回的数据表明表面风速比预料的快得多(大于400英里每小时),并延伸到根所能观察到的一样深的地方,大约向内延伸有数千千米。木星的大气层也被发现相当紊乱,这表明由于它内部的热量使得飓风在大部分急速运动,不像地球只从太阳处获取热量。

表面云层

木星表面云层的多彩可能是由大气中化学成分的微妙差异及其作用造成的,可能其中混入了硫的混合物,造就了五彩缤纷的视觉效果,但是其详情仍无法知晓。
色彩的变化与云层的高度有关:最低处为蓝色,跟着是棕色与白色,最高处为红色。我们通过高处云层的洞才能看到低处的云层。
木星表面的大红斑早在300年前就被地球上的观察所知晓(这个发现常归功于卡西尼,或是17世纪的RobertHooke)。大红斑是个长25,000千米,跨度12,000千米的椭圆,总以容纳两个地球。其他较小一些的斑点也已被看到了数十年了。红外线的观察加上对它自转趋势的推导显示大红斑是一个高压区,那里的云层顶端比周围地区特别高,也特别冷。类似的情况在土星和海王星上也有。还不清楚为什么这类结构能持续那么长的一段时间。

能量及辐射

对木星的考察表明:木星正在向其宇宙空间释放巨大能量。它所放出的能量是它所获得太阳能量的两倍,这说明木星释放能量的一半来自于它的内部。木星内部存在热源。众所周知,太阳之所以不断放射出大量的光和热,是因为太阳内部时刻进行着核聚变反应,在核聚变过程中释放出大量的能量。木星是一个巨大的液态氢星球,本身已具备了无法比拟的天然核燃料,加之木星的中心温度已达到了28万K,具备了进行热核反应所需的高温条件。至于热核反应所需的高压条件,就木星的收缩速度和对太阳放出的能量及携能粒子的吸积特性来看,木星在经过几十亿年的演化之后,中心压可达到最初核反应时所需的压力水平。一旦木星上爆发了大规模的热核反应,以千奇百怪的旋涡形式运动的木星大气层将充当释放核热能的“发射器”。所以,有些科学家猜测,再经过几十亿年之后,木星将会改变它的身份,从一颗行星变成一颗名副其实的恒星。木星和太阳的成分十分相似,但是却没有像太阳那样燃烧起来,是因为它的体积太小。木星要成为像太阳那样的恒星,需要将质量增加到100倍才行。
木星向外辐射能量,比起从太阳处收到的来说要多。木星内部很热:内核处可能高达20,000开。该热量的产量是由开尔文-赫尔姆霍兹原理生成的(行星的慢速重力压缩)。(木星并不是像太阳那样由核反应产生能量,它太小因而内部温度不够引起核反应的条件。)这些内部产生的热量可能很大地引发了木星液体层的对流,并引起了我们所见到的云顶的复杂移动过程。土星与海王星在这方面与木星类似,奇怪的是,天王星则不。
木星与气态行星所能达到的最大直径一致。如果组成又有所增加,它将因重力而被压缩,使得全球半径只稍微增加一点儿。一颗恒星变大只能是因为内部的热源(核能)关系,但木星要变成恒星的话,质量起码要再变大80倍。
伽利略号飞行器对木星大气的探测发现在木星光环和最外层大气层之间另存在了一个强辐射带,大致相当于电离层辐射带的十倍。惊人的是,新发现的带中含有来自不知何方的高能量氦离子。

磁场

木星有一个巨型磁场,比地球的大得多,磁层向外延伸超过6.5e7千米(超过了土星的轨道!)。(小记:木星的磁层并非球状,它只是朝太阳的方向延伸。)这样一来木星的卫星便始终处在木星的磁层中,由此产生的一些情况在木卫一上有了部分解释。不幸的是,对于未来太空行走者及全身心投入旅行者号和伽利略号设计的专家来说,木星的磁场在附近的环境捕获的高能量粒子将是一个大障碍。这类“辐射”类似于,不过大大强烈于,地球的电离层带的情况。它将马上对未受保护的人类产生致命的影响。

木星光环

木星有一个同土星般的光环,不过又小又微弱。它们的发现纯属意料之外,只是由于两个旅行者1号的科学家一再坚持航行10亿千米后,应该去看一下是否有光环存在。其他人都认为发现光环的可能性为零,但事实上它们是存在的。这两个科学家想出的真是一条妙计啊。它们后来被地面上的望远镜拍了照。
不像土星的,木星的光环较暗(反照率为0.05)。它们由许多粒状的岩石质材料组成。
木星光环中的粒子可能并不是稳定地存在(由大气层和磁场的作用)。这样一来,如果光环要保持形状,它们需被不停地补充。两颗处在光环中公转的小卫星:木卫十六和木卫十七,显而易见是光环资源的最佳候选人。

木星的卫星

木星有66颗已知卫星,4颗大伽利略发现的卫星,62颗小的。
由于伽利略卫星产生的引潮力,木星运动正逐渐地变缓。同样,相同的引潮力也改变了卫星的轨道,使它们慢慢地逐渐远离木星。
木卫一,木卫二,木卫三由引潮力影响而使公转共动关系固定为1:2:4,并共同变化。木卫四也是这其中一个部分。在未来的数亿年里,木卫四也将被锁定,以木卫三的两倍公转周期,木卫一的八倍来运行。
木星的卫星由宙斯一生中所接触过的人来命名(大多是他的情人)。
卫星距离(千米)半径(千米)质量(千克)发现者发现日期
木卫十六128000209.56e16Synnott1979
木卫十五129000101.91e16Jewitt1979
木卫五181000987.17e18Barnard1892
木卫十四222000507.77e17Synnott1979
木卫一42200018158.94e22伽利略1610
木卫二67100015694.80e22伽利略1610
木卫三10704002631.21.48e23伽利略1610
木卫四1869000〔近〕2410.3±1.51.08e23伽利略1610〔远心点〕1897000km
木卫十三1109400085.68e15Kowal1974
木卫六11480000939.56e18Perrine1904
木卫十11720000187.77e16Nicholson1938
木卫七11737000387.77e17Perrine1905
木卫十二21200000153.82e16Nicholson1951
木卫十一22600000209.56e16Nicholson1938
木卫八23500000251.91e17Melotte1908
木卫九23700000187.77e16Nicholson1914
较小卫星的数值是约值。

八大行星的直径_八大行星 -土星

英文名:Saturn
土星是离太阳第六远的行星,也是八大行星中第二大的行星,中国古代称为“镇星”,是太阳系密度最小的行星,可以浮在水上。

基本参数

公转轨道:距太阳1,429,400,000千米(9.54天文单位)
自转方向:自西向东
行星半径:60,268千米(赤道)
质量:5.68e26千克
卫星数:60颗

名称来源

在罗马神话中,土星(Saturn)是农神的名称。希腊神话中的农神Cronus是Uranus(天王星)和盖亚的儿子,也是宙斯(木星)的父亲。土星也是英语中“星期六”(Saturday)的词根。

探测历史

发现:土星在史前就被发现了。伽利略在1610年第一次通过望远镜观察到它,并记录下它的奇怪运行轨迹,但也被它给搞糊涂了。早期对于土星的观察十分复杂,这是由于当土星在它的轨道上时每过几年,地球就要穿过土星光环所在的平面。(低分辨率的土星图片所以经常有彻底性的变化。)直到1659年惠更斯正确地推断出光环的几何形状。在1977年以前,土星的光环一直被认为是太阳系中唯一存在的;但在1977年,在天王星周围发现了暗淡的光环,在这以后不久木星和海王星周围也发现了光环。
访问:先锋11号在1979年首先去过土星周围,同年又被旅行家1号和2号访问。卡西尼飞行器也在2004年到达土星。

性质

通过小型的望远镜观察也能明显地发现土星是一个扁球体。它赤道的直径比两极的直径大大约10%(赤道为120,536千米,两极为108,728千米),这是它快速的自转和流质地表的结果。其他的气态行星也是扁球体,不过没有这样明显。
土星是最疏松的一颗行星,它的比重(0.7)比水星的还要小。
与木星一样,土星是由大约75%的氢气和25%的氦气以及少量的水,甲烷,氨气和一些类似岩石的物质组成。这些组成类似形成太阳系时,太阳星云物质的组成。
土星内部和木星一样,由一个岩石核心,一个具有金属性的液态氢层和一个氢分子层,同时还存在少量的各式各样的冰。
土星的内部是剧热的(在核心可达12000开尔文),并且土星向宇宙发出的能量比它从太阳获得的能量还要大。大多数的额外能量与木星一样是由Kelvin-Helmholtz原理产生的。但这可能还不足以解释土星的发光本领,一些其他的作用可能也在进行,可能是由于土星内部深层处氦的“冲洗”造成的。
木星上的明显的带状物在土星上则模糊许多,在赤道附近变得更宽。由地球无法看清它的顶层云,所以直到旅行者飞船偶然观测到,人们才开始对土星的大气循环情况开始研究。土星与木星一样,有长周期的椭圆轨道以及其他的大致特征。在1990年,哈博望远镜观察到在土星赤道附近一个非常大的白色的云,这是当旅行者号到达时并不存在的;在1994年,另一个比较小的风暴被观测到。

土星光环

八大行星 八大行星 八大行星-概述,八大行星-行星定义
从地球上可以看到两个明显的光环(A和B)和一个暗淡的光环(C),在A光环与B光环之间的间隙被称为“卡西尼部分”。一个在A光环的外围部分更为暗淡的间隙被称为“EnckeGap”(但这有点用词不当,因为它可能从没被Encke看见过)。旅行者号发送回的图片显示还有四个暗淡的光环。土星的光环与其他星的光环不同,它是非常明亮的。(星体反照率为0.2-0.6)
尽管从地球上看光环是连续的,但这些光环事实上是由无数在各自独立轨道的微小物体构成的。它们的大小的范围由1厘米到几米不等,也有可能存在一些直径为几公里的物体。
土星的光环特别地薄,尽管它们的直径有250,000千米甚至更大,但是它们最多只有1.5千米厚。尽管它们有给人深刻印象的明显的形象,但是在光环中只有很少的物质--如果光环被压缩成一个物件,它最多只可能是100千米宽。
光环中的微粒可能主要是由水凝成的冰组成,但它们也可能是由冰裹住外层的岩石状微粒。
旅行者号证实令人迷惑的半径的不均匀性在光环中的确存在,这被叫做“spokes(辅条)”,这是首先由一个业余天文学家报道的。它们的自然本性带给了我们一个谜,但使得我们有了弄清土星磁场区的线索。
土星最外层的光环,F光环,是由一些更小的光环组成的繁杂构造,它的一些“绳结(Knots)”是很明显的。科学家们推测这些所谓的结可能是块状的光环物质或是一些迷你的月亮。这些奇怪的织状物在旅行者1号发回的图像中很明显,但它们在旅行者2号发回的图象中看不见,可能是因为后者拍到的光环部分的成分与前者的略有不同。
土星的卫星之间和光环系统中有着复杂的潮汐共振现象:一些卫星,所谓的“牧羊卫星”(比如土卫十五,土卫十六和土卫十七)对保持光环形状有着明显的重要性;土卫一看来应对卡西尼部分某种物质的缺乏负责任,这与小行星带中Kirkwoodgaps遇到的情况类似;土卫十八处于EnckeGap中。整个系统太复杂,我们所掌握的还很贫乏。
土星(以及其他类木行星)的光环的由来还不清楚,尽管它们可能自从形成时就有光环,但是光环系统是不稳定的,它们可能在前进过程中不断更新,也可能是比较大的卫星的碎片。

光环数据

光环距离(千米)宽度(千米)质量(千克)
D670007500
C74500175001.1e18
B92000255002.8e19
卡西尼部分
A122200146006.2e18
F140210500
G16580080001e7?
E302000〔三十万二千千米〕300000
(距离是指从土星中心到光环内部的边缘)这种分类真的有点误导,因为微粒的密度以一个复杂的方式改变,不能用分类法划分为一个明显的区域:在光环中存在不断的变化;那些间隙并不是全部空的,这些光环并不是一个完美的圆环。
像其他类木行星一样,土星有一个极有意义的磁场区。
在无尽的夜空中,土星很容易被眼睛看到。尽管它可能不如木星那么明亮,但是它很容易被认出是颗行星,因为它不会象恒星那样“闪烁”。光环以及它的卫星能通过一架小型业余天文望远镜观察到。

土星的卫星

土星有18颗被命名的卫星,比其他任何行星都多。还有一些小卫星还将被发现。
在那些旋转速度已知的卫星中,除了土卫九和土卫七以外都是同步旋转的。一共已发现60颗卫星。
有三对卫星,土卫一-土卫三,土卫二-土卫四和土卫六-土卫七有万有引力的互相作用来维持它们轨道间的固定关系。土卫一公转周期恰巧是土卫三的一半,它们可以说是在1:2共动关系中,土卫二-土卫四的也是1:2;土卫六-土卫七的则是3:4关系。
除了18颗被命名的卫星以外,至少已有一打以上已经被报道了,并且已经给予了临时的名称。
卫星距离(千米)半径(千米)质量(千克)发现者发现日期
土卫十八13400010Showalter1990
土卫十五13800014Terrile1980
土卫十六139000462.70e17Collins1980
土卫十七142000462.20e17Collins1980
土卫十一151000575.60e17Walker1980
土卫十151000892.01e18Dollfus1966
土卫一1860001963.80e19赫歇耳1789
土卫二2380002608.40e19赫歇耳1789
土卫三2950005307.55e20卡西尼1684
土卫十三29500015Reitsema1980
土卫十四29500013Pascu1980
土卫四3770005601.05e21卡西尼1684
土卫十二37700016Laques1980
土卫五5270007652.49e21卡西尼1672
土卫六122200025751.35e23惠更斯1655
土卫七14810001431.77e19波德1848
土卫八35610001701.88e21卡西尼1671
土卫九129520001104.00e18Pickering1898

八大行星的直径_八大行星 -天王星

英文名:Uranus
天王星是太阳系中离太阳第七远行星,从直径来看,是太阳系中第三大行星。天王星的体积比海王星大,质量却比其小。

基本参数

公转轨道:距太阳2,870,990,000千米(19.218天文单位)
自转方向:自西向东
行星半径:25,559千米(赤道)
质量:8.683e25千克
卫星数:25颗

名称来源

读天王星的英文名字,发音时要小心,否则可能会使人陷于窘迫的境地。Uranus应读成"YOORanus",不要读成"youranus"(你的肛门)或是"urineus"(对着我们撒尿)。
乌拉诺斯是古希腊神话中的宇宙之神,是最早的至高无上的神。他是盖亚的儿子兼配偶,是Cronus(农神土星)、独眼巨人和泰坦(奥林匹斯山神的前辈)的父亲。
探测历史
发现:天王星是由威廉・赫歇
耳通过望远镜系统地搜寻,在1781年3月13日发现的,它是现代发现的第一颗行星。事实上,它曾经被观测到许多次,只不过当时被误认为是另一颗恒星(早在1690年JohnFlamsteed便已观测到它的存在,但当时却把它编为34Tauri)。赫歇耳把它命名为"theGeorgiumSidus(天竺葵)"(乔治亚行星)来纪念他的资助者,那个对美国人而言臭名昭著的英国国王:乔治三世;其他人却称天王星为“赫歇耳”。由于其他行星的名字都取自希腊神话,因此为保持一致,由波德首先提出把它称为“乌拉诺斯(Uranus)”(天王星),但直到1850年才开始广泛使用。
访问:只有一艘星际探测器曾到过天王星,那是在1986年1月24日由旅行者2号完成的。

自转

大多数的行星总是围绕着几乎与黄道面垂直的轴线自转,可天王星的轴线却几乎平行于黄道面。在旅行者2号探测的那段时间里,天王星的南极几乎是接受太阳直射的。这一奇特的事实表明天王星两极地区所得到来自太阳的能量比其赤道地区所得到的要高。然而天王星的赤道地区仍比两极地区热。这其中的原因还不为人知。
而且它不是以大于90度的转轴角进行正向转动,就是以倾角小于90度进行逆向转动。问题是你要在某个地方画一条分界线,因为比如对金星是否是真的逆向转动(不是倾角接近180度的正向转动)就有一些争议。

组成

天王星基本上是由岩石和各种各样的冰组成的,它仅含有15%的氢和一些氦(与大都由氢组成的木星和土星相比是较少的)。天王星和海王星在许多方面与木星和土星在去掉巨大液态金属氢外壳后的内核很相象。虽然天王星的内核不像木星和土星那样是由岩石组成的,但它们的物质分布却几乎是相同的。

大气

天王星的大气层含有大约83%的氢,15%的氦和2%的甲烷。
如其他所有的气态行星一样,天王星也有带状的云围绕着它快速飘动。但是它们太微弱了,以至只能由旅行者2号经过加工的图片才可看出。由哈博望远镜的观察显示的条纹却更大更明显。据推测,这种差别主要是由于季节的作用而产生的(太阳直射到天王星的某个低纬地区可能造成明显的白天黑夜的作用)。
天王星显蓝色是其外层大气层中的甲烷吸收了红光的结果。那儿或许有像木星那样的彩带,但它们被覆盖着的甲烷层遮住了。

其他性质

旅行者2号发现了继已知的5颗大卫星后的10颗小卫星。看来在光环内还有一些更小的卫星。
谈到天王星转轴的问题,还值得一提的是它的磁场也十分奇特,它并不在此行星的中心,而倾斜了近60度。这可能是由于天王星内部的较深处的运动而造成的。
有时在晴朗的夜空,刚好可用肉眼看到模糊的天王星,但如果你知道它的位置,通过双筒望远镜就十分容易观察到了。通过一个小型的天文望远镜可以看到一个小圆盘状。迈克・哈卫的行星寻找图表显示了天王星以及其它行星在天空中的位置。越来越多的细节,越来越好的图表将被如灿烂星河这样的天文程序来发现和完成。

天王星的卫星

天王星有25颗已命名的卫星,以及2颗已发现但暂未命名的卫星。
与太阳系中的其他天体不同,天王星的卫星并不是以古代神话中的人物而命名的,而是用莎士比亚和罗马教皇的作品中人物的名字。
它们自然分成两组:由旅行者2号发现的靠近天王星的很暗的10颗小卫星和5颗在外层的大卫星。
它们都有一个圆形轨道围绕着天王星的赤道(因此相对于赤道面有一个较大的角度)。
卫星距离(千米)半径(千米)质量(千克)发现者发现日期
天卫六5000013旅行者2号1986
天卫七5400016旅行者2号1986
天卫八5900022旅行者2号1986
天卫九6200033旅行者2号1986
天卫十6300029旅行者2号1986
天卫十一6400042旅行者2号1986
天卫十二6600055旅行者2号1986
天卫十三7000027旅行者2号1986
天卫十四7500034旅行者2号1986
天卫十八7500020Karkoschka1999
天卫十五8600077旅行者2号1985
天卫五Kuiper1948
天卫一1910005791.27e21Lassell1851
天卫二2660005851.27e21Lassell1851
天卫三4360007893.49e21赫歇耳1787
天卫四5830007613.03e21赫歇耳1787
天卫十六720000030Gladman1997
天卫十七1220000060Gladman1997

光环

像其他所有气态行星一样,天王星有光环。它们像木星的光环一样暗,但又像土星的光环那样由相当大的直径达到10米的粒子和细小的尘土组成。天王星有11层已知的光环,但都非常暗淡;最亮的那个被称为Epsilon光环。天王星的光环是继土星的被发现后第一个被发现的,这一发现被认为是十分重要的,由此我们知道了光环是行星的一个普遍特征,而不是仅为土星所特有的
光环距离(千米)宽度(千米)
1986U2R380002,500
6418401-3
5422302-3
4425802-3
Alpha447207-12
Beta456707-12
Eta471900-2
Gamma476301-4
Delta482903-9
1986U1R500201-2
Epsilon5114020-100
(距离是指从天王星的中心算到光环的内边的长度)

八大行星的直径_八大行星 -海王星

英文名:Neptune
海王星是环绕太阳运行的第八颗行星,也是太阳系中第四大天体(直径上)。海王星在直径上小于天王星,但质量比它大。

基本参数

公转轨道:距太阳4,504,000,000千米(30.06天文单位)
自转方向:自西向东
行星半径:24,788千米(赤道)
质量:1.0247e26千克
卫星数:13颗

名称来源

古罗马神话中的海神尼普顿。

探测历史

发现:在天王星被发现后,人们注意到它的轨道与根据牛顿理论所推知的并不一致。因此科学家们预测存在着另一颗遥远的行星从而影响了天王星的轨道。Galle和d'Arrest在1846年9月23日首次观察到海王星,它出现的地点非常靠近于亚当斯和勒威耶根据所观察到的木星、土星和天王星的位置经过计算独立预测出的地点。一场关于谁先发现海王星和谁享有对此命名的权利的国际性争论产生于英国与法国之间(然而,亚当斯和勒威耶个人之间并未有明显的争论);将海王星的发现共同归功于他们两人。后来的观察显示亚当斯和勒威耶计算出的轨道与海王星真实的轨道偏差相当大。如果对海王星的搜寻早几年或晚几年进行的话,人们将无法在他们预测的位置或其附近找到它。
访问:仅有一艘宇宙飞船旅行者2号于1989年8月25日造访过海王星。几乎我们所知的全部关于海王星的信息来自这次短暂的会面。

轨道及成分

由于冥王星的轨道极其怪异,因此有时它会穿过海王星轨道,自1979年以来海王星成为实际上距太阳最远的行星,在1999年冥王星才会再次成为最遥远的行星。
海王星的组成成份与天王星的很相似:各种各样的“冰”和含有15%的氢和少量氦的岩石。海王星相似于天王星但不同于土星和木星,它或许有明显的内部地质分层,但在组成成份上有着或多或少的一致性。但海王星很有可能拥有一个岩石质的小型地核(质量与地球相仿)。它的大气多半由氢气和氦气组成。还有少量的甲烷。

大黑斑

在旅行者2号造访海王星的期间,行星上最明显的特征就属位于南半球的大黑斑(TheGreatDarkSpot)了。黑斑的大小大约是木星上的大红斑的一半(直径的大小与地球相似),海王星上的疾风以300米每秒(700英里每小时)的速度把大黑斑向西吹动。旅行者2号还在南半球发现一个较小的黑斑极一以大约16小时环绕行星一周的速度飞驶的不规则的小团白色烟雾,得知是“TheScooter”。它或许是一团从大气层低处上升的羽状物,但它真正的本质还是一个谜。
然而,1994年哈博望远镜对海王星的观察显示出大黑斑竟然消失了!它或许就这么消散了,或许暂时被大气层的其他部分所掩盖。几个月后哈博望远镜在海王星的北半球发现了一个新的黑斑。这表明海王星的大气层变化频繁,这也许是因为云的顶部和底部温度差异的细微变化所引起的。

其他性质

海王星的蓝色是大气中甲烷吸收了日光中的红光造成的。
作为典型的气体行星,海王星上呼啸着按带状分布的大风暴或旋风,海王星上的风暴是太阳系中最快的,时速达到2000千米。
和土星、木星一样,海王星内部有热源--它辐射出的能量是它吸收的太阳能的两倍多。
海王星的磁场和天王星的一样,位置十分古怪,这很可能是由于行星地壳中层传导性的物质(大概是水)的运动而造成的。
通过双目望远镜可观察到海王星(假如你真的知道往哪儿看),但假如你要看到行星上的一切而非仅仅一个小圆盘,那么你就需要一架大的天文望远镜。MikeHarvey的行星寻找图表指出此时海王星在天空中的位置(及其他行星的位置),再由StarryNight这个天象程序作更多更细致的定制。

海王星的卫星

海王星有9颗已知卫星:8颗小卫星和海卫一。
卫星距离(千米)半径(千米)质量(千克)
发现者发现日期
海卫三4800029旅行者2号1989
海卫四5000040旅行者2号1989
海卫五5300074旅行者2号1989
海卫六6200079旅行者2号1989
海卫七7400096旅行者2号1989
海卫八118000209旅行者2号1989
海卫一35500013502.14e22Lassell1846
海卫二5509000170Kuiper1949
海卫九482000016×14?2003

海王星光环

海王星也有光环。在地球上只能观察到暗淡模糊的圆弧,而非完整的光环。但旅行者2号的图像显示这些弧完全是由亮块组成的光环。其中的一个光环看上去似乎有奇特的螺旋形结构。
同天王星和木星一样,海王星的光环十分暗淡,但它们的内部结构仍是未知数。
人们已命名了海王星的光环:最外面的是Adams(它包括三段明显的圆弧,今已分别命名为自由Liberty,平等Equality和互助Fraternity),其次是一个未命名的包有Galatea卫星的弧,然后是Leverrier(它向外延伸的部分叫作Lassell和Arago),最里面暗淡但很宽阔的叫Galle。
光环距离(千米)宽度(千米)另称
Diffuse41900151989N3R,Galle
Inner53200151989N2R,勒威耶
Plateau5320058001989N4R,Lassell,Arago
Main62930<501989N1R,Adams

八大行星的直径_八大行星 -被除名冥王星

1930年由美国天文学家汤博发现的冥王星曾被认为是大行星,但随着一颗比冥王星更大、更远的天体的发现,2006年8月24日召开的国际天文学联合会第26届大会,经两千余天文学家表决通过―――太阳系只有八大行星。不再将传统九大行星之一的冥王星视为行星,而将其列入“矮行星”。
冥王星被排除在大行星之外的原因:
一是必须是围绕恒星运转的天体。
二是质量足够大,能依靠自身引力使天体呈圆球状。
三是其轨道附近应该没有其他物体。
冥王星对第三条不符,且冥王星的卫星过于巨大,形成了双星系统。根据这个定义,冥王星被归为矮行星。

  

爱华网本文地址 » http://www.aihuau.com/a/8104010103/151386.html

更多阅读

AE的八大就业方向 八大行星的公转方向

AE的就业方向是什么我经常遇到很多人跟我说这样的话,我以后要做出好莱坞电影级别的特效、我以后要成为中国最牛B的特效师、我以后要成为像AK那样大神级别的人物、我以后要改变内地电影后期四不像的囧态等等。无可厚非,每个应该有梦想,

太阳系各大行星图片 太阳系八大行星的图片

太阳系各大行星图片太阳系清晨,当你站在茫茫大海的岸边或登上五岳之首的泰山,眺望东方冉冉升起的一轮红日时,一种蓬勃向上的激情会从心底油然而生。人们热爱太阳,崇拜太阳,讚美太阳,把太阳看作是光明和生命的象徵  太阳在人类生活中是如

八大行星简介 八大行星最小的是

八大行星”资料大全水星简介水星是最靠近太阳的行星,它与太阳的角距从不超过28°,中国古代称水星为辰星。古时候西方人以为水星是两颗行星,他们在暮色中见到它时,称它为墨丘利(Mercury),在晨曦中见到它时,称它为阿波罗。后来人们知道了墨

八大行星名称来源详解 八大行星的名称

我们已经知道,太阳系有八大行星,从内到外分别为水星Mercury、金星Venus、地球Tellus、火星Mars、木星Jupiter、土星Saturn、天王星Uranus和海王星Neptune。从汉语来看,前五个星名“金木水火土”乃是我们祖先根据五行理论给星体所取之名

声明:《八大行星 八大行星 八大行星-概述,八大行星-行星定义》为网友醉酒夢紅顏丶分享!如侵犯到您的合法权益请联系我们删除