超临界co2流体萃取 超临界CO2溶剂 超临界CO2溶剂-超临界流体的发展史,超临界CO2溶

超临界co2流体萃取 超临界CO2溶剂 超临界CO2溶剂-超临界流体的发展史,超临界CO2溶

随着环境的温度和压力变化,任何一种物质都存在三种相态-气相,液相,固相,三相成平衡态共存的点叫三相点.液,气两相成平衡状态的点叫临界点.在临界点时的温度和压力称为临界温度和临界压力,如图1所示,不同的物质其临界点的压力和温度各不相同.超临界流体(Super Critical fluid,简称SCF)是指温度和压力均高于其临界点的流体,常用来制备成的超临界流体有二氧化碳,氨,乙烯,丙烷,丙烯,水等.物体处于超临界状态时,由于气液两相性质非常相近,以致无法清楚分别,所以称之为「超临界流体。

超临界二氧化碳_超临界CO2溶剂 -超临界流体的发展史

超临界流体具有溶解其他物质的特殊能力,1822年法国

二氧化碳的分子结构医生Cagniard首次发表物质的临界现象,并在1879即被Hannay和Hogarth二位学者研究发现无机盐类能迅速在超临界乙醇中溶解,减压后又能立刻结晶析出.但由于技术,装备等原因,时至

图1.物体之三相图以及临界点 图自工研院 环安中心

PDF created withpdffactoryPro trial version 超临界二氧化碳

20世纪30年代,Pilat和Gadlewicz两位科学家才有了用液化气体提取「大分子化合物」的构想.1950年代,美,苏等国即进行以超临界丙烷去除重油中的柏油精及金属,如镍,钒等,降低后段炼解过程中触媒中毒的失活程度,但因涉及成本考量,并未全面实用化.1954年Zosol用实验的方法证实了二氧化碳超临界萃取可以萃取油料中的油脂.此后,利用超临界流体进行分离的方法沉寂了一段时间,70年代的后期,德国的Stahl等人首先在高压实验装置的研究取得了突破性进展之后,「超临界二氧化碳萃取」这一新的提取,分离技术的研究及应用,才有实质性进展;1973及1978年第一次和第二次能源危机后,超临界二氧化碳的特殊溶解能力,才又重新受到工业界的重视.1978年后,欧洲陆续建立以超临界二氧化碳作为萃取剂的萃取提纯技术,以处理食品工厂中数以千万吨计的产品,例如以超临界二氧化碳去除咖啡豆中的咖啡因,以及自苦味花中萃取出可放在啤酒内的啤酒香气成分.超临界流体萃取技术近30多年来引起人们的极大兴趣,这项化工新技术在化学反应和分离提纯领域开展了广泛深入的研究,取得了很大进展,在医药,化工,食品及环保领域成果累累.

超临界二氧化碳_超临界CO2溶剂 -超临界流体的特性

超临界流体具有类似气体的扩散性及液体的溶解能力,同时兼具低黏度,低表面张力的特性,如表1所示,使得超临界流体能够迅速渗透进入微孔隙的物质.因此用于萃取时萃取速率比液体快速而有效,尤其是溶解能力可随温度,压力和极性而变化.

超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的.当物质处于超临界状态时,成为性质介于液体和气体之间的单一相态,具有和液体相近的密度,黏度虽高于气体但明显低于液体,扩散系数为液体的10~100倍,因此对物料有较好的渗透性和较强的溶解能力,能够将物料中某些成分提取出来.

在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小,沸点高低和分子量大小的成分萃取出来.同时超临界流体的密度,极性和介电常数随着密闭体系压力的增加而增加,利用预定程序的升压可将不同极性的成分进行分步提取.当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压,升降温的方法使超临界流体变成普通气体或液体,被萃取物质则自动完全析出,从而达到分离提纯的目的,并将萃取与分离两过程合为一体,这就是超临界流体萃取分离的基本原理.4.常见的超临界流体

照理来说,任何物质应该都能够变成超临界状态,但是有些物质的临界压力以

相 密度ρc (g/cm3) 黏度(Pa s) 扩散系数(cm2/s)

气体 10-3 10-5 10-1

超临界流体 0.1~0.5 10-4~10-5 10-3

液体 10-3 10-3 10-5

表1.典型的超临界流体,液体,气体的基本性质 表自工研院 环安中心

及临界温度太高,所以常用,常见的大概是下表所列出的分子

常见分子的临界数据如下表2

超临界二氧化碳_超临界CO2溶剂 -超临界二氧化碳

概述

二氧化碳在温度高于临界温度Tc=31.26℃,压力高于临界压力Pc=72.9atm的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力.用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景.超临界二氧化碳是目前研究最广泛的流体之一,因为它具有以下几个特点:

(1)CO2临界温度为31.26℃,临界压力为72.9atm,临界条件容易达到.

(2)CO2化学性质不活泼,无色无味无毒,安全性好.

(3)价格便宜,纯度高,容易获得.

二氧化碳超临界萃取

(Superitical Fluid Extraction-CO2)

所谓的二氧化碳超临界萃取是将已经压温加压成超临界状态的二氧化碳作为溶剂,以其极高的溶解力萃取平时不易萃取的物质,以下有几项关于萃取的说明:

(1)溶解作用

在超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性,沸点和分子量密切相关,一般来说有以下规律:亲脂性,低沸点成分可在104KPa(约1大气压)以下萃取,如挥发油,烃,酯,醚,环氧化合物,以及天然植物和果实中的香气成分,如桉树脑,麝香草酚,酒花中的低沸点酯类等;化合物的极性基团( 如-OH,-COOH等)愈多,则愈难萃取.强极性物质如糖,氨基酸的萃取压力则要在4×104KPa以上.另外化合物的分子量愈大,愈难萃取;分子量在200~400范围内的成分容易萃取,有些低分子量,易挥发成分甚至可直接用CO2液体提取;高分子量物质(如蛋白质,树胶和蜡等)则很难以二氧化碳萃取.

分子临界温度临界压力临界密度分子临界温度临界压力临界密度H2-239.912.80.032CF3Cl28.838.70.579N2-147.033.50.314NH3132.3111.30.235Xe16.657.71.110CH3OH240.078.50.272CO231.26572.90.468CH3CN274.747.70.237C2H632.348.20.203H2O374.2218.30.315CF3H25.947.80.526(单位:)℃atmg/cm³表2. 常见分子的临界数据 表自工研院 环安中心

(2)特点

将超临界二氧化碳大量地拿来做萃取之用是因为它具有以下几个萃取技术上的特点:

A.超临界CO2流体常态下是无色无味无毒的气体,与萃取成分分离后,完全没有溶剂的残留,可以有效地避免传统溶剂萃取条件下溶剂毒性的残留.同时也防止了提取过程对人体的毒害和对环境的污染,是一种天然且环保的萃取技术.

B. 萃取温度低,CO2的临界温度为31.265℃,临界压力为72.9atm,可以有效地防止热敏性成分的氧化,逸散和反应,完整保留生质物体的生物活性;同时也可以把高沸点,低挥发度,易热解的物质在其沸点温度以下萃取出来.

C. 萃取和分离合二为一,当饱含溶解物的二氧化碳超临界流体流经分离器时,由于压力下降使得CO2与萃取物迅速回复成为分离的两相(气液分离)而立即分开,不存在物料的相变过程,不需回收溶剂,操作方便;不仅萃取效率高,而且能耗较少,节约成本,并且符合环保节能的潮流.

D. 萃取操作容易,压力和温度都可以成为调节萃取过程的参数.在临界点附近,温度压力的微小变化,都会引起CO2密度显着变化,从而引起待萃物的溶解度发生变化,可通过控制温度或压力的方法达到萃取目的.压力固定,改变温度可将物质分离;反之温度固定,降低压力使萃取物分离;因此技术流程短,耗时少,占地小,同时对环境真正友善,萃取流体CO2可循环使用,并不会排放废二氧化碳导致温室效应!成为真正「绿色化」生产制程.

E.超临界流体的极性可以改变,一定温度条件下, 只要改变压力或加入适宜的夹带剂即可提取不同极性的物质,可选择范围广.

影响萃取的因素

影响超临界二氧化碳萃取的因素有下列几点-超临界二氧化碳的密度,夹带剂,粒度,体积等等

A.密度

溶剂强度与超临界流体的密度有关.温度一定时,密度(压力)增加,可使溶剂强度增加,溶质的溶解度增加.

B.夹带剂

适用于萃取的超临界流体的大多数溶剂是极性小的溶剂,这有利于选择性的提取,但限制了其对极性较大溶质的应用.因此可在这些流体中加入少量夹带剂,以改变溶剂的极性.最常用来萃取的超临界流体为二氧化碳,通过加入夹带剂可适用于极性较大的化合物.有人在10MPa压力下(约等于100大气压),用不同浓度的乙醇作夹带剂,研究了以藏药雪灵芝中萃取其中的3种成分.加一定夹带剂的超临界二氧化碳可以创造一般溶剂达不到的萃取条件,大幅度提高收率.这对于贵重药材成份的提取,工业化开发价值极高.常用的夹带剂有乙醇,尿素,丙酮,己烷以及水等等.

C.粒度

粒子的大小可影响萃取的收率.一般来说,粒度小有利于超临界二PDF created with pdfFactory Pro trial version 绿色溶剂-超临界二氧化碳

氧化碳的萃取.

D.流体体积

提取物的分子结构与所需的超临界流体的体积有关.有科学家将加压加温到68.8MPa,40℃后提取50克叶子中的叶黄素和胡萝卜素.要得到叶黄素50%的回收率,需要2.1L超临界二氧化碳;如要得到95%的回收率,由此推算,则需要33.6L的超临界二氧化碳.而胡萝卜素在二氧化碳中的溶解度大,仅需要1.4L,即可达到95%的回收率.

超临界二氧化碳_超临界CO2溶剂 -超临界二氧化碳技术主要应用范围

二氧化碳,可以说是目前应用最广的超临界流体,这主要是因为它没有毒性,临界温度低与价格便宜等因素.近年来最引人注意的研究领域则主要在机能性成分的萃取,纤维染色技术,半导体的清洗,特殊药用成分的颗粒生产,乾洗技术,化学反应与超临界流体净米技术等.以下为常见的超临界二氧化碳在各种工业中的应用范围

食品工业

A.植物油脂(大豆油,蓖麻油,棕油,可哥脂,玉米油,米糠油,小麦胚芽

油等)的提取

B.动物油脂(鱼油,肝油,各种水产油)的提取;食品原料(米,面,禽蛋)

的脱脂

C.脂质混合物(甘油酯,脂肪酸,卵磷脂等)的分离与精制

D.油脂的脱色和脱臭

E.植物色素和天然香味成分的提取

F.咖啡,红茶脱除咖啡因

G.啤酒花的提取

H.发酵酒精的浓缩

医药,化妆品工业

A.鱼油中的高级脂肪酸(EPA,DHA,脱氢抗坏血酸等)的提取

B.植物或菌体中高级脂肪酸(γ-亚麻酸等)的提取

C.药效成分(生物碱,黄酮,脂溶性维生素,甙等)的提取

D.香料成分(动物香料,植物香料等)的提取

E.化妆品原料(美肤效果剂,表面活性剂,脂肪酸酯等)的提取

F.烟草脱除尼古丁.

化学工业

常见使用超临界二氧化碳技术的应用包括了传统产业的乾洗业,纤维染色技术,化学反应和高科技产业的半导体清洗技术传统乾洗业,正面临其所使用的有机溶剂,过氯酸乙烯(percholoretylene),对于健康上与环保上的危害的压力,许多主要的相关产业业者,也不断的寻求替代的方法.事实上,利用超临界流体技术的乾洗设备,已经在1999年正式在美国设立营业店面,这套设备的单价约在75,000美金到50,000美金之间.PDF created with pdfFactory Pro trial version

这个超临界流体工业化的应用,证明超临界二氧化碳,能有效的与传统民生工业在价格上作竞争.另外的清洗应用包括了金属零组件的清洗,商业用洗碗机与一般的家用清洗设备.

利用超临界二氧化碳,取代现行有机溶剂的染色技术,对于环保,废水处理与制造成本上,有非常多的优点.由于超临界二氧化碳流体,基本上的特性较接近气体,故对于应用于取代有机液体,进行聚酯纤维的染色技术制程而言,不会有排废问题的产生,这还包括了工业用水的减少,与有害工业废弃物的减量.在经济性的优点,还包括了产量的增加,减少能源的消耗,纤维染色技术工业化的应用成功,将增强染色技术在经济上的竞争力,和纺织工业制程操作的技术提升,更能有效减少废水的排放与染色的时间,对于时间,能源,环保与成本等层面,都是一大进步.因此,超临界流体染色技术,将会是更省时,更经济,更环保的新制程.超临界流体染色技术研究在工研院化工所的努力之下,将带领化工业者进入绿色化学时代的新摇篮.

超临界二氧化碳,提供了传统有机溶剂使用的另一种选择.除了在环保上的优点之外,对于温度,压力,流速,反应物浓度等反应变因的控制,使反应本身的控制更为容易,由于反应操作控制容易,也相对的增加了反应的选择性与产量.因此,反应本身能在较少的时间与空间上进行,对于设备成本投资的减少也是一大贡献,对于一些反应物本身在二氧化碳流体溶解度较小的物质,主要的技术克服要点在于乳化微粒(micelle)的形成,与其在二氧化碳流体中的动速率.在这方面的应用,以美国杜邦公司在北卡罗兰那州,投资达4,000万美元的新建研究工厂投资案,最受到关注,主要的研究方向就是想利用超临界二氧化碳,作为反应溶液,以生产含氟聚合物(fluoropolymer).

对于半导体晶片上光阻物质和蚀刻的残留物质,一直都没有一种有效的化学方法来去除,通常必须配合几种不同的方法与设备,例如电浆灰化(Plasmaashing )与湿式或乾式清洗,才能达到产品品质的要求,现有的湿式清洗方法是利用具侵蚀性的硫酸,双氧水或有机溶剂混合使用,这些传统的方法会产生大量的有机废液,对环境造成极大的冲击.因此包括隶属美国能源部著名的LosAlamos 国家实验室和其他各国的研究机构,也积极的在开发利用超临界二氧化碳处理技术,以去除半导体晶片上的上述的光阻物质,利用超临界流体技术处理方法,能有效的在单一清洗槽中,将半导体晶片上残留杂质清洗干净,由于超临界流体的表面张力和黏度非常的低,故能有效而且快速的将清洁溶剂,带到低于0.18μm的微细组织结构中,对于光阻物质及其衍生物的去除,同样的能大量的减少有害溶液的使用量,并减少废水的产生,更重要的是简化了制程并增加产量.

此外,下列的化工产业也开始使用超临界二氧化碳萃取技术,以降低生产过程的污染物产生

A.石油残渣油的脱沥

B.原油的回收,润滑油的再生

C.烃的分离,煤液化油的提取

D.含有难分解物质的废液的处理

医学工业

超临界二氧化碳在医学工业上的应用远超过其他工业,因此将超临界二氧化碳在医学工业范畴内的应用分为三大类-生物活性物质和天然药物提取,药剂学,药物分析

A.生物活性物质和天然药物提取

(A)浓缩沙丁鱼油,扁藻中的EPA和DHA,综合利用海藻资源开辟了新的途径.

(B)从蛋黄中提取蛋黄磷酯

(C)从大豆中提取大豆磷酯

(D)从烂掉的番茄中提取β-胡萝卜素

B.药剂学

超临界流体结晶技术是根据物质在超临界流体中的溶解度对温度和压力敏感的特性制备超细颗粒,其中气体抗溶剂过程(GAS)常用于生物活性物质的加工.GAS过程是指在高压条件下溶解的二氧化碳使有机溶剂膨胀,内聚能显着降低,溶解能力减小,使已溶解的物质形成结晶或无定型沉淀的过程.应用如下

(A)将二氧化碳和胰岛素二甲亚

  

爱华网本文地址 » http://www.aihuau.com/a/8104050103/163443.html

更多阅读

CO2超临界萃取装置使用步骤 超临界萃取装置

CO2超临界萃取装置使用步骤(本人原创,转载请注明出处)1).检查电源接线是否正常,检查冷冻箱水、各加热箱水是否足够(离箱盖2-3公分左右,高温时水份蒸发快),检查CO2气瓶压力保证在5-6MPa气压,检查各管路接头及连接部位是否牢靠。2).依次打开总

超声萃取原理 农药残留速测卡

超声波中药材提取、萃取技术与设备介绍一、超声波提取中药材的原理1、超声的空化效应超声波技术应用于萃取、匀化,是基于惠更斯波动理论和超声波在液体连续介质中传播时特有的“空化效应”的作用结果。(1)惠更斯波动原理指出,波动(包括超

咖啡萃取--如何判断一杯好咖啡 德龙咖啡机萃取器复位

-ALBUS(阿博斯)咖啡的味道及萃取方式都非常多元,欧洲精品咖啡协会曾提出所谓"Goldcup"的概念,一定的萃取率及咖啡浓度决定了咖啡的味道,然而什麽是萃取率,而它对咖啡味道的影响又是如何呢?以下做一些知识分享:萃取率:研磨後的咖啡粉

精油的萃取方法–(超临界)二氧化碳萃取法 二氧化碳萃取 精油

这一套运用”高压、低温”的萃取方式开始于1980年代,其仪器与设备非常复杂且昂贵,其精油标示为“CO2Extraction”。这种萃取方式全程都在一个密闭的反应槽中进行,所需的时间非常短,只要几分钟即可(蒸馏法最少需要1个小时)。其原理在于先利用二

咖啡萃取的原理和法则上 咖啡萃取时间

制作咖啡就是萃取的过程,萃取的方式多种多样,我们要做的是把萃取原理应用到制作上,得到最完美出品的咖啡。在说萃取之前,先普及一点常识:一,咖啡豆里有优质的风味,也有缺陷的瑕疵风味。二,咖啡的芳香物质会先被溶出,不好的物质后被溶出。(所以

声明:《超临界co2流体萃取 超临界CO2溶剂 超临界CO2溶剂-超临界流体的发展史,超临界CO2溶》为网友三好骚年分享!如侵犯到您的合法权益请联系我们删除