万有引力定律是解释物体之间的相互作用的引力的定律。定律内容为任意两个质点通过连心线方向上的力相互吸引。该引力的的大小与它们的质量乘积成正比,与它们距离的平方成反比,与两物体的化学本质或物理状态以及中介物质无关。伽利略在1632年实际上已经提出离心力和向心力的初步想法。布里阿德在1645年提出了引力平方比关系的思想.牛顿在1665―1666年的手稿中,用自己的方式证明了离心力定律,但向心力这个词可能首先出现在《论运动》的第一个手稿中。一般人认为离心力定律是惠更斯在1673年发表的《摆钟》一书中提出来的。根据1684年8月-10月的《论回转物体的运动》一文手稿中,牛顿很可能在这个手稿中第一次提出向心力及其定义。
万有引力定律_万有引力定律 -简介
万有引力定律
万有引力定律是艾萨克・牛顿在前人(开普勒、胡克、雷恩、哈雷)研究的基础上,凭借他的数学能力证明,在1687年于《自然哲学的数学原理》上发表的。万有引力定律是解释物体(质点)间由于它们的引力质量而引起的相互吸引力所遵循的规律。
牛顿的普适万有引力定律表示如下:任意两个质点通过连心线方向上的力相互吸引。该引力的的大小与它们的质量乘积成正比,与它们距离的平方成反比,与两物体的化学本质或物理状态以及中介物质无关。
万有引力定律_万有引力定律 -定律内容
表述
万有引力定律
自然界中任何两个物体都是相互吸引的,引力的大小与两物体的质量的乘积成正比,与两物体间距离的平方成反比。
公式
F=G*Mm/R2(G=6.67259×10^-11N?m^2/kg^2)可以读成F等于G乘以M1M2除以R的平方商
F:两个物体之间的引力
G:万有引力常数
m1:物体1的质量
m2:物体2的质量
r:两个物体之间的距离
依照国际单位制,F的单位为牛顿(N),m1和m2的单位为千克(kg),r的单位为米(m),常数G近似地等于6.67×10^-11N*m^2*kg^?2(牛顿米的平方每千克的平方)。
式中表明,排斥力F一直都将不存在,这意味着净加速度的力是绝对的。(这个符号规约是为了与库仑定律相容而订立的,在库仑定律中绝对的力表示两个电子之间的排斥力。)
万有引力定律_万有引力定律 -应用
万有引力定律
万有引力定律揭示了天体运动的规律,在天文学上和宇宙航行计算方面有着广泛的应用。它为实际的天文观测提供了一套计算方法,可以只凭少数观测资料,就能算出长周期运行的天体运动轨道,科学史上哈雷彗星、海王星、冥王星的发现,都是应用万有引力定律取得重大成就的例子。利用万有引力公式、开普勒第三定律等还可以计算太阳、地球等无法直接测量的天体的质量。牛顿还解释了月亮和太阳的万有引力引起的潮汐现象。他依据万有引力定律和其他力学定律,对地球两极呈扁平形状的原因和地轴复杂的运动,也成功的做了说明。
1856年修建的爱荷华州迪比克散弹塔极大数量的机械发明的正常运行在某种程度上依赖于重力而实现。例如,高度差可以提供有用的液压,这是静脉滴注和水塔的运作原理。利用水的重力势能发电的水力发电装置亦可以这种能量将电车推上斜坡。同样,缆绳上悬挂的重物可通过滑轮使缆绳及缆绳位于滑轮另一边的那一部分持续地绷紧。
还有更多的例子:比如说熔铅,当铅水从散弹塔的顶端灌入后,会变成一颗颗如雨点一般散落的铅弹――首先被分离成为多个小液滴,形成熔融状态的球体,之后逐渐凝固为固体,并在被众多相同的熔融石的共同作用下,最终在自由落体中冷却形成球形或近球形。重力驱动时钟由重力势能提供运行的能量,摆钟则依赖于重力来校准时间。人造卫星的正常运行则是运用牛顿《原理》计算的结果。
万有引力定律_万有引力定律 -意义
万有引力定律的发现,是17世纪自然科学最伟大的成果之一。它把地面上物体运动的规律和天体运动的规律统一了起来,对以后物理学和天文学的发展具有深远的影响。它第一次解释了(自然界中四种相互作用之一)一种基本相互作用的规律,在人类认识自然的历史上树立了一座里程碑。
万有引力定律_万有引力定律 -存在问题
牛顿
尽管牛顿对重力的描述对于众多实践运用来说十分地精确,但它也具有几大理论问题且被证明是不完全正确的。
理论问题
没有任何征兆表明重力的传送媒介可以被识别出,牛顿自己也对这种无法说明的超距作用感到不满意。他从来没有在他的文字中“赋予产生这种能力的原因”。在其它情况下,他使用运动的现象来解释物体受到不同力的作用的原因,但是对于重力这种情况,他却无法用实验方法来确认运动产生了重力。此外,他甚至还拒绝对这个由地面产生的力的起因提出假设,而这一切都违背了科学证据的原则。
牛顿对重力的发现埋葬了“哲学家至今仍在愚蠢地试图探索自然”这句所谓的真理,就同他深信着的“有各种因素”使得“各种迄今未知的原因”是所有“自然现象”的基础。这些基本的现象至21世纪仍在研究中,而且,虽然存在着许多种的假设,最终答案仍然没有找出。
牛顿的理论需要定义重力可以瞬时传播。因此给出了古典自然时空观的假设,这样亦能使约翰内斯・开普勒所观测到的角动量守恒成立。但是,这与爱因斯坦的狭义相对论理论有直接的冲突,因为狭义相对论定义了速度的极限――真空中的光速――在此速度下信号可以被传送。
观测结果的不符
牛顿的理论并不能完全地解释出水星在沿其轨道运动到近日点时出现的进动现象进动。牛顿学说的预言(由其它行星的重力拖曳产生)与实际观察到的进动相比每世纪会出现43弧秒的误差。
牛顿的理论预言的重力作用下光线的偏折只有实际观测结果的一半。广义相对论则与观察结果更为接近。
所有物体的重力质量与惯性质量相同的这一观测现象是牛顿的系统所不能解释的。广义相对论则将它作为一个基本条件。