转载 气辅成型技术 真空辅助成型工艺

原文地址:气辅成型技术作者:为人生而奋斗气辅注塑工艺是国外八十年代研究成功,九十年代才得到实际应用的一项实用型注塑新工艺,其原理是利用高压隋性气体注射到熔融的塑料中形成真空截面并推动熔料前进,实现注射、保压、冷却等过程...可以说,在工艺上,只要气体能有效引入,顺利排放,气针对产品就没有多大影响.我认为更重要的是气针的设计对注塑制品的影响.

气针的设计主要是便于产品的设计,要将气针埋入制品内引入气体,必会在制品表面留下痕迹,很多使用氮气设备的新用户因经验上的不足,他们不愿意看到这种现象,于是想法把吹气针留下的这一缺陷隐藏起来,这就产生吹气针的设计方式了.

还有一方面是对现有模具的改造,这种局限性更大了.那么气针的要求就会更多一些.我们公司就有五种气针方式在为客户服务.

但领先气辅技术的先导者们却不这么认为.很多时候他们为保证得到更好品质的产品,更有利于气体的引入和排放,而打破一些传统的制品设计思路.远的不说,如我在上海翰氏模具看到有一件他们设计的气辅成型汽车饰件就很到位.

其次是气针设定的位置了,这与射胶灌点一样重要,当然这里还设及到气针在模腔内的引入方式,在流道内的引入方式,在射嘴上的引入方式.为此人们还开发了气辅模流分析软件来帮助工程师们来设计更优质的产品.气辅成型是指在塑胶充填到型腔适当的时候(90%~99%)注入高压惰性气体,气体推动融熔塑胶继续充填满型腔,用气体保压来代替塑胶保压过程的一种新兴的注塑成型技术.本文将介绍气辅注射成型原理及工艺。1.1制件性能良好

(1)消除气孔和凹陷在制件不同壁厚连接处所设的加强筋和凸台中合理开设气道,欠料注射后气体导入,补偿了因熔体在冷却过程中的收缩,避免气孔和凹陷的产生。
(2)减少内应力和翘曲变形在制件冷却过程中,从气体喷嘴到料流末端形成连续气体通道,无压力损失,各处气压一致,因而降低了残余应力,防止制件翘曲变形。
(3)增加制件的强度制件上中空的加强筋和凸台的设计,使强度重量比比同类实心制件高出大约5,制件的惯性矩工大幅度提高,从而提高制件使用强度。
(4)提高设计的灵活性气辅注射可用来成型壁厚不均的制品,使原来必须分为几个部分单独成型的制品实现一次成型,便于制件的装配。例如国外一家公司原来生产的以几十个金属零件为主体、形状复杂的汽车门板,通过GAIM技术并采用塑料合金材料实现了一次成型。

1.2 成本低

(1)节约原材料气辅注射成型在制品较厚部位形成空腔,可减少成品重量达10%一50%
(2)降低设备费用气辅注射较普通注射成型需要较小的注射压力和锁模力(可节省25%一50%),同时节约能量达30%
(3)相对缩短成型周期由于去除了较厚部位芯料,缩短冷却时间可达50%正是基于这些优点,气辅注射适用于成型大型平板状制品如桌面、门、板等;大型柜体如家用电器壳体、电视机壳、办公机械壳体等;结构部件如底座、汽车仪表板、保险杠、汽车大前灯罩等汽车内外饰件。

2 成型材料的选择

理论上讲,所有能用于常规注射成型方法的热塑性塑料均适用于气辅注射成型,包括一些填充树脂和增强塑料。一些流动性非常好,难以填充的塑料如热塑性聚氨酷成型时会有一定困难;粘度高的树脂所需气体压力高,技术上也有难度;玻璃纤维增强材料对设备有一定的磨损。

在气辅成型过程中,由于制件的成型壁厚和表面缺陷在很大程度上由原料性能决定,改变过程参数对其影响并不很大,因此成型原料的选择极为重要。表1是用于气辅注射成型的常用塑料。



PA(聚酰胺)和PBT(聚对苯二甲酸丁二酸酯)具有独特的结晶稳定性,尤其适合用于气辅注射成型;PA6,PA66和PP也经常被用于气辅成型;一些部分结晶型树脂,成型时内部靠近气道一侧由于冷却速率相对较慢,无明显无定型边界层产生,但外侧因为模壁的陕速冷却会产生无定型边界层,从而影响制品质量;对于玻璃纤维增强塑料,在模壁处会产生轻微的分子定向,且在模壁下一定距离处(约距制品外表面1mm处)沿料流方向达到最大成型高强度制件可选用具有较高弹性模量的树脂,实际生产过程中应根据制件使用要求和具体成型条件选择合适的树脂材料。

3 制件中气道的设计

气道设计是气辅成型技术中最关键的设计因素之一,它不仅影响制品的刚性同时也影响其加工行为,由于它预先规定了气体的流动状态,所以也会影响到初始注射阶段熔体的流动,合理的气道选择对成型较高质量的制品至关重要。

(1)常见气道的几何形状

对于带加强筋的大型板件,气辅注射成型时,其基板厚度一般取3一6mm,在气体流动距离较短或尺寸较小的制件中,基板厚度可减至1.5一2.5mm;加强筋的壁厚可达到与其相接部分壁厚的100%一125%而不会产生凹陷;气道的几何形状相对于浇口应是对称或是单方向的,气体通道必须连续,体积应小于整个制件体积的10%。
2)制件的强度分析

成型传统带加强筋的制件经常出现凹陷、翘曲变形等,而图1所示各种断面几何形状加强筋的板件采用气辅注射成型,既保证了制品强度,又克服了传统注射成型的缺点。通常,相同基板厚度条件下,类似图1(e)带有空心宽T型加强筋的比带空心窄T型加强筋的制件强度要高,后者又比相同截面带有类似图1(a)的空心半圆型加强筋板件的强度要高。

制件强度随受力大小和其形式 不同变化很大,虽然采用加强筋可增大制品刚度,但若对其施加局部集中应力,就会大大削弱制品强度。

(3)气道尺寸
气道的尺寸设计与填充气体的流动方向密切相关,气体在流道内总是沿着阻力最小的方向流动。稳0定的牛顿流体通过直径为D的圆管,其压降公式为ΔP=32μVL/D ,其中μ为流体粘度,V为平均流速,L为流体段长度,D为管径,因为气全粘度极小,低于树脂的0.1%,而且压降在长度方向上可被忽略,因而只需考虑树脂压降产生的阻力。

假塑性流体在圆管中流动的压降公式与牛顿流体形式相似,因此利用上述公式而不必考虑实际流体及气体的状况,比较基于气体近浇点不同方向的压降ΔP(即比较各段的L和D的大小),就可定性地解决气体朱充动方向问题ΔP小的方向即为气体的优先流动方向。

改变流道尺寸直接导致不同方向压降的变化,从而改变气体的流动方向,并影响制件的成型质量。

4 模具设计

由于气辅注射成型采用相对较低的注射压力和锁模力,所以除可采用一般模具钢制做模具外,还可采用锌基合金、锻铝等轻合金材料制造。

气辅注射成型过程的模具设计与普通注射成型相似,模具及制件结构设计造成的缺陷并不能通过调整成型过程中的参数来弥补,而是应及时修改模具和制件结构的设计,普通注射成型中所要求的设计原则在气辅注射成型过程中依然适用,以下主要介绍其不同部分设计时应注意事项:

(1)要绝对避免喷射现象虽然现在气辅注射有朝着薄壁制品、生产特殊形状弯管方向发展的趋势,但传统的气辅注射仍多用来生产型腔体积比较大的制件,料流通过浇口时受到很高的剪应力,容易产生喷射和蠕动等熔体破裂现象。设计时可适当加大进浇口尺寸、在制品较薄处设置浇口等方法来改善这种情况。

(2)型腔设计由于气辅注射中欠料注射量、气体注射压力、时间等参数很难控制一致,因此气辅注射时一般要求一模一腔,尤其制品质量要求高时更应如此。实际生产中有过一模四腔的例子,采用多型腔设计时,要求采用平衡式的浇注系统布置形式。

(3)浇口设计一般情况只使用一个浇口,其位置的设置要保证欠料注射部分的熔体均匀充满型腔并避免产生喷射。若气针安装在注射机喷嘴和浇注系统中,浇口尺寸必须足够大,防止气体注入前熔体在此处凝结。

气辅注射中最为常见的一个问题是气体穿透预定的气道进入制件薄壁部分,在表面形成类似指状或叶状的气体流纹(Gasfingering),甚至少数几个这样的“指纹\"效应对制品的影响也是致命的,应该极力避免。

研究表明,形成这类缺陷的主要原因是由于进浇口尺寸和气体延迟时间设置不当造成的,而且这两种因素常常相互作用,比如当采用较小的浅口和较短的延迟时间时,就极易产生这种不良后果,既影响了制品外观质量又极大地降低了制件强度。一般可采用缩短气道长度,加大进浇口尺寸,合理控制气体压力的方法避免这种不利情况的发生。

(4)流道的几何形状相对于浇口应是对称或单方向的,气体流动方向与熔融树脂流动方向必须相同。

(5)模具中应设计调节流动平衡的溢流空间,以得到理想的空心通道。

气辅注射成型技术近些年在家用电器、汽车、家具、办公用品等行业广泛应用,并且朝着提高制品尺寸稳定性、制造表面性能优良的薄壁制品、生产特殊形状管材、取代汽车工业中金属制件等方向发展,相信在以后的工业生产中气辅注射技术仍将发挥其重要作用。


气辅注射成型原理及工艺
气辅成型(GIM)是指在塑胶充填到型腔适当的时候(90%~99%)注入高压惰性气体,气体推动融熔塑胶继续充填满型腔,用气体保压来代替塑胶保压过程的一种新兴的注塑成型技术.
要点:
1、计量管理。
2、利用气辅控制器把高压氮气直接压入到模腔内熔胶里。
3、使塑件内部膨胀而造成中空。

一、气辅成型的优点
1、降低产品的残余应力,使产品不变形。
2、解决和消除产品表面缩痕问题,应用于厚度变化大的产品。
3、降低注塑机的锁模力,减少成型机的损耗。
4、提高注塑机的工作寿命。
5、节省塑胶原材料,节省率可达百分之三十。
6、缩短产品生产成型周期时间,提高生产效率。
7、降低模腔内的压力,使模具的损耗减少和提高模具的使用寿命。
8、对某些塑胶产品,模具可采用铝合金属材料。
9、简化产品的繁复设计。
二、气辅成型过程
? 合模
? 射座前进
? 熔胶充填
? 气体注入
? 预塑计量(气体保压)
? 射座后退(排气卸压)
? 冷却定型
? 开模
? 顶出制件
三、气体辅助注塑周期
1、注塑期
[转载]气辅成型技术 真空辅助成型工艺
以定量的塑化塑料充填到模腔内。(保证在充气期间,气体不会把产品表面冲破及能有一理想的充气体。)
2、充气期
可以注塑期中或后,不同时间注入气体。气体注入的压力必需大于注塑压力,以致使产品成中空状态。
3、气体保压期
当产品内部被气体充填后,气体作用于产品中空部分的压力就是保压压力,可大大减低产品的缩水及变形率
4、脱模期
随着冷却周期的完成,模具的气体压力降至大气压力,产品由模腔内顶出。
四、气辅成型所需的条件
? 注塑成型机
? 气体的来源(氮气发生器)
? 输送气体的管道
? 控制氮气有效流动的设备(氮气控制台)
? 带有气道设置的成型模具(气辅模具)

五、成型条件的设定
1、注塑机的设定
o 原材料的烘干温度与传统成型一致
o 料筒的塑化温度比传统注塑偏高
o 模温要求较严,冷却水路布置要使冷却效果均衡
o 注塑压力与传统注塑基本一致
o 注塑速度一般采用高速填充
2、氮气设备的设定
a、氮气发生器的压力一般设定在30MPA左右
b、氮气控制台要素的设定(延迟时间、气体压入时间、气体保持时间、气体放气时间、压力的设定、气体速率)

  

爱华网本文地址 » http://www.aihuau.com/a/25101015/283888.html

更多阅读

甲酸钙蒸发结晶技术 蒸发结晶器

一、甲酸钙蒸发装置简介:在甲酸钙的蒸发结晶技术中,传统工艺一般采用带搅拌及盘管的蒸发釜进行单效蒸发,其优点是溶液在换热管外进行蒸发浓缩,不会产生换热管堵管的现象,但缺点是蒸发强度低,换热管外壁容易结壁,由于设备加热面积很难做大

转载 转帖 膛线技术 膛线管5.5淘宝400元

原文地址:转帖)膛线技术作者:蓉蓉膛线技术研讨在构成一支枪的所有部件中最具有神秘感和诱人魅力莫过于枪管了,任何具有工程实践初步知识的人都能大体想象出这个活是怎样做的。任何拥有配备一台车床,一台铣床和基本工具(包括操作知识)的小

纤维增强环氧树脂复合材料成型工艺及其应用 环氧树脂成型

中国玻璃钢工业协会 陈博摘要:本文从环氧树脂的特性出发,分析了以环氧树为基体的复合材料的常用生产技术,典型产品,并介绍了国内外的有关情况。一、前言相比传统材料,复合材料具有一系列不可替代的特性,自二次大战以来发展很快。尽管产量

对元青花研究的几点认识 从严治党几点认识

对元青花研究的几点认识刘金成内容提要:元青花研究从20世纪初就已经开始,其主要观点和论断可以说是明确和清晰的。近几年来由于元青花拍卖市场利好空间,引起了学术界和非学术界存在的不同观点和声音,有的观点和声音甚至出现了错误导向。

声明:《转载 气辅成型技术 真空辅助成型工艺》为网友学习雷锋好榜样分享!如侵犯到您的合法权益请联系我们删除