2011年高考分类汇编之解析几何(十) #TRS_AUTOADD_1309847929881 {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}#TRS_AUTOADD_1309847929881 P {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}#TRS_AUTOADD_1309847929881 TD {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}#TRS_AUTOADD_1309847929881 DIV {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}#TRS_AUTOADD_1309847929881 LI {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}/**---JSON--{"":{"margin-top":"0","margin-bottom":"0"},"p":{"margin-top":"0","margin-bottom":"0"},"td":{"margin-top":"0","margin-bottom":"0"},"div":{"margin-top":"0","margin-bottom":"0"},"li":{"margin-top":"0","margin-bottom":"0"}}--**/DIV.MyFav_1309847930678 P.MsoNormal{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1309847930678 LI.MsoNormal{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1309847930678 DIV.MsoNormal{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1309847930678 DIV.Section1{page: Section1}陕西文
C.(坐标系与参数方程选做题)直角坐标系中,以原点O为极点,轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线:(为参数)和曲线:上,则的最小值为 .
【分析】利用化归思想和数形结合法,把两条曲线转化为直角坐标系下的方程.
【解】曲线的方程是,曲线的方程是,两圆外离,所以的最小值为.
【答案】1
17.(本小题满分12分)
设椭圆: 过点(0,4),离心率为.
(1)求的方程;
(2)求过点(3,0)且斜率为的直线被所截线段的中点坐标.
【分析】(1)由椭圆过已知点和椭圆离心率可以列出方程组,解方程组即可,也可以分步求解;(2)直线方程和椭圆方程组成方程组,可以求解,也可以利用根与系数关系;然后利用中点坐标公式求解.
【解】(1)将点(0,4)代入的方程得, ∴b=4,
又 得,即, ∴,∴的方程为
(2)过点且斜率为的直线方程为,
设直线与C的交点为A,B,将直线方程代入C的方程,得
,即,解得,,
AB的中点坐标,,
即所截线段的中点坐标为.注:用韦达定理正确求得结果,同样给分.
上海理

3.设m是常数,若点F(0,5)是双曲线的一个焦点,则m= .
5.在极坐标系中,直线与直线的夹角大小为 .
(结果用反三角函数值表示)
23.(本大题满分18分,第1小题满分4分,第二小题满分6分,第3小题满分8分)
已知平面上的线段及点,任取上一点,线段长度的最小值称为点到线段的距离,记作
(1)求点到线段的距离;
(2)设是长为2的线段,求点的集合所表示的图形面积;
(3)写出到两条线段距离相等的点的集合,其中,是下列三组点中的一组.
对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分.
①.
②.
③.
23、解:⑴ 设是线段上一点,则
,当时,。
⑵ 设线段的端点分别为,以直线为轴,的中点为原点建立直角坐标系,
则,点集由如下曲线围成
,
其面积为。
⑶ ① 选择,
② 选择。
③ 选择。
上海文
5.若直线过点(3,4),且(1,2)是它的一个法向量,则直线得方程为
22.(本题满分16分,第1小题4分,第2小题6分,第3小题6分)
已知椭圆(常数),是曲线上的动点,是曲线上的右顶点,定点的坐标为
(1)若与重合,求曲线的焦点坐标;
(2)若,求的最大值与最小值;
(3)若的最小值为,求实数的取值范围.
22、解:⑴ ,椭圆方程为,
∴ 左、右焦点坐标为。
⑵ ,椭圆方程为,设,则
∴时; 时。
⑶ 设动点,则
∵ 当时,取最小值,且,∴且
解得。
2011-07-05 人教网
爱华网本文地址 » http://www.aihuau.com/a/339051/165563372604.html