2011年高考分类汇编之解析几何(十二) #TRS_AUTOADD_1309846968546 {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}#TRS_AUTOADD_1309846968546 P {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}#TRS_AUTOADD_1309846968546 TD {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}#TRS_AUTOADD_1309846968546 DIV {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}#TRS_AUTOADD_1309846968546 LI {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}/**---JSON--{"":{"margin-top":"0","margin-bottom":"0"},"p":{"margin-top":"0","margin-bottom":"0"},"td":{"margin-top":"0","margin-bottom":"0"},"div":{"margin-top":"0","margin-bottom":"0"},"li":{"margin-top":"0","margin-bottom":"0"}}--**/DIV.MyFav_1309846969780 P.MsoNormal{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1309846969780 LI.MsoNormal{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1309846969780 DIV.MsoNormal{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1309846969780 P.MsoHeader{BORDER-RIGHT: medium none; PADDING-RIGHT: 0cm; BORDER-TOP: medium none; PADDING-LEFT: 0cm; FONT-SIZE: 9pt; PADDING-BOTTOM: 0cm; MARGIN: 0cm 0cm 0pt; BORDER-LEFT: medium none; LAYOUT-GRID-MODE: char; PADDING-TOP: 0cm; BORDER-BOTTOM: medium none; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: center}DIV.MyFav_1309846969780 LI.MsoHeader{BORDER-RIGHT: medium none; PADDING-RIGHT: 0cm; BORDER-TOP: medium none; PADDING-LEFT: 0cm; FONT-SIZE: 9pt; PADDING-BOTTOM: 0cm; MARGIN: 0cm 0cm 0pt; BORDER-LEFT: medium none; LAYOUT-GRID-MODE: char; PADDING-TOP: 0cm; BORDER-BOTTOM: medium none; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: center}DIV.MyFav_1309846969780 DIV.MsoHeader{BORDER-RIGHT: medium none; PADDING-RIGHT: 0cm; BORDER-TOP: medium none; PADDING-LEFT: 0cm; FONT-SIZE: 9pt; PADDING-BOTTOM: 0cm; MARGIN: 0cm 0cm 0pt; BORDER-LEFT: medium none; LAYOUT-GRID-MODE: char; PADDING-TOP: 0cm; BORDER-BOTTOM: medium none; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: center}DIV.MyFav_1309846969780 P.MsoFooter{FONT-SIZE: 9pt; MARGIN: 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; FONT-FAMILY: "Times New Roman"}DIV.MyFav_1309846969780 LI.MsoFooter{FONT-SIZE: 9pt; MARGIN: 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; FONT-FAMILY: "Times New Roman"}DIV.MyFav_1309846969780 DIV.MsoFooter{FONT-SIZE: 9pt; MARGIN: 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; FONT-FAMILY: "Times New Roman"}DIV.MyFav_1309846969780 P.MsoPlainText{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: 宋体; TEXT-ALIGN: justify}DIV.MyFav_1309846969780 LI.MsoPlainText{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: 宋体; TEXT-ALIGN: justify}DIV.MyFav_1309846969780 DIV.MsoPlainText{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: 宋体; TEXT-ALIGN: justify}DIV.MyFav_1309846969780 P.CharCharCharCharCharCharCharCharChar{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; TEXT-INDENT: 10pt; LINE-HEIGHT: 125%; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1309846969780 LI.CharCharCharCharCharCharCharCharChar{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; TEXT-INDENT: 10pt; LINE-HEIGHT: 125%; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1309846969780 DIV.CharCharCharCharCharCharCharCharChar{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; TEXT-INDENT: 10pt; LINE-HEIGHT: 125%; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1309846969780 P.CharCharCharCharCharCharCharCharCharCharCharCharCharCharCharCharCharCharChar{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; TEXT-INDENT: 10pt; LINE-HEIGHT: 125%; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1309846969780 LI.CharCharCharCharCharCharCharCharCharCharCharCharCharCharCharCharCharCharChar{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; TEXT-INDENT: 10pt; LINE-HEIGHT: 125%; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1309846969780 DIV.CharCharCharCharCharCharCharCharCharCharCharCharCharCharCharCharCharCharChar{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; TEXT-INDENT: 10pt; LINE-HEIGHT: 125%; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1309846969780 P.MTDisplayEquation{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1309846969780 LI.MTDisplayEquation{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1309846969780 DIV.MTDisplayEquation{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1309846969780 DIV.Section1{page: Section1}DIV.MyFav_1309846969780 OL{MARGIN-BOTTOM: 0cm}DIV.MyFav_1309846969780 UL{MARGIN-BOTTOM: 0cm}天津文
13.已知双曲线的一条渐近线方程是,它的一个焦点与抛物线的焦点相同,则双曲线的方程为 .
【解】.
由题设可得双曲线方程满足,即.
于是.又抛物线的焦点为,则.与
,于是.所以双曲线的方程.
14..已知圆的圆心是直线与轴的交点,且圆与直线相切,则圆 的方程为 .
【解】.
直线与轴的交点为.
于是圆心的坐标为;
因为圆与直线相切,所以圆心到直线的距离即为半径,
因此.
所以圆的方程为.
21.(本小题满分分)
已知椭圆的离心率.连接椭圆的四个顶点得到的菱形的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆相交于不同的两点.已知点的坐标为.
(ⅰ) 若,求直线的倾斜角;
(ⅱ)点在线段的垂直平分线上,且.求的值.
【解】(Ⅰ)由得,再由得.
因为连接椭圆的四个顶点得到的菱形的面积为,
所以,则,
解方程组得.所以椭圆的方程.
(Ⅱ)(ⅰ)由(Ⅰ)得.设点的坐标为,
由题意直线的斜率存在,设直线的斜率为,则直线的方程为。
于是两点的坐标满足方程组由方程组消去并整理得
,因为是方程的一个根,则由韦达定理有
,所以,从而.
,由,得,
整理得 ,,所以.
所以直线的倾斜角为或.
(ⅱ)线段的中点为,则的坐标为.
下面分情况讨论:
(1) 当时,点的坐标为,线段的垂直平分线为轴.
于是,,由得.
(2) 当时,线段的垂直平分线方程为
.令得
由,,
.整理得..所以.
综上,或.
浙江理
5.已知双曲线的左右焦点分别为F1,F2, 点M在双曲线上且M F1 x轴,则F1到直线F2M的距离为 C
A. B.
C. D.
7.已知圆C:,若过点(1,)可作圆的切线有两条,则实数m的取值范围是 C
A. B.(,4) C. D.
10.是两个定点,点为平面内的动点,且(且),点的轨迹
围成的平面区域的面积为,设(且)则以下判断正确的是
A.在上是增函数,在上是减函数
B.在上是减函数,在上是减函数
C.在上是增函数,在上是增函数
D.在上是减函数,在上是增函数
A
21.(本小题满分15分)

如图,P是抛物线C:y=x2上一点,直线l过点P且与抛物线C交于另一点Q.。
(Ⅰ)若直线l与过点P的切线垂直,求线段PQ中点M的轨迹方程;
(Ⅱ)若直线l不过原点且与x轴交于点S,与y轴交于点T,试求的取值范围.
解:(Ⅰ)设P(x1,y1),Q(x2,y2),M(x0,y0),依题意x1≠0,y1>0,y2>0.
由y=x2, ① 得y'=x.
∴过点P的切线的斜率k切= x1,
∴直线l的斜率kl=-=-,
∴直线l的方程为y-x12=- (x-x1),
方法一:
联立①②消去y,得x2+x-x12-2=0. ∵M是PQ的中点
∴ x0==-, y0=x12-(x0-x1). ∴y0=x02++1(x0≠0),
∴PQ中点M的轨迹方程为y=x2++1(x≠0).
方法二:
由y1=x12,y2=x22,x0=,得y1-y2=x12-x22=(x1+x2)(x1-x2)=x0(x1-x2),
则x0==kl=-,∴x1=-,将上式代入②并整理,得y0=x02++1(x0≠0),
∴PQ中点M的轨迹方程为y=x2++1(x≠0).
(Ⅱ)设直线l:y=kx+b,依题意k≠0,b≠0,则T(0,b).
分别过P、Q作PP'⊥x轴,QQ'⊥y轴,垂足分别为P'、Q',则
.
方法一:
∴|b|()≥2|b|=2|b|=2.
∵y1、y2可取一切不相等的正数,
∴的取值范围是(2,+).
方法二:
∴=|b|=|b|.
当b>0时,=b==+2>2;
当b<0时,=-b=.
又由方程③有两个相异实根,得△=4(k2+b)2-4b2=4k2(k2+2b)>0,
于是k2+2b>0,即k2>-2b.
所以>=2.∵当b>0时,可取一切正数,
∴的取值范围是(2,+).
方法三:
由P、Q、T三点共线得kTQ=KTP,
即=.则x1y2-bx1=x2y1-bx2,即b(x2-x1)=(x2y1-x1y2).
于是b==-x1x2.
∴==+=+≥2.
∵可取一切不等于1的正数,
∴的取值范围是(2,+).
2011-07-05 人教网
爱华网本文地址 » http://www.aihuau.com/a/375751/71952635995.html