中考数学压轴题精选 2010年中考数学压轴题100题精选(1-30)

2010年中考数学压轴题100题精选(1-10题)<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />

【001】如图,已知抛物线<?xml:namespace prefix = v ns = "urn:schemas-microsoft-com:vml" /> (a≠0)经过点 ,抛物线的顶点为 ,过 作射线 .过顶点 平行于 轴的直线交射线 于点 , 在 轴正半轴上,连结 .

(1)求该抛物线的解析式;

(2)若动点 从点 出发,以每秒1个长度单位的速度沿射线 运动,设点 运动的时间为 .问当 为何值时,四边形 分别为平行四边形?直角梯形?等腰梯形?

(3)若 ,动点 和动点 分别从点 和点 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿 和 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为 ,连接 ,当 为何值时,四边形 的面积最小?并求出最小值及此时 的长.

x

y

M

C

D

P

Q

O

A

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


【002】

A

C

B

P

Q

E

D

图16

如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).

(1)当t = 2时,AP =      ,点Q到AC的距离是      ;

(2)在点P从C向A运动的过程中,求△APQ的面积S与

t的函数关系式;(不必写出t的取值范围)

(3)在点E从B向C运动的过程中,四边形QBED能否成

为直角梯形?若能,求t的值.若不能,请说明理由;

(4)当DE经过点C 时,请直接写出t的值.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.   

(1)直接写出点A的坐标,并求出抛物线的解析式;

    (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD

向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?

②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?

请直接写出相应的t值。

 

<?xml:namespace prefix = w ns = "urn:schemas-microsoft-com:office:word" />

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【004】如图,已知直线 与直线 相交于点 分别交 轴于 两点.矩形 的顶点 分别在直线 上,顶点 都在 轴上,且点 与点 重合.

    (1)求 的面积;

(2)求矩形 的边 与 的长;

(3)若矩形 从原点出发,沿 轴的反方向以每秒1个单位长度的速度平移,

设移动时间为 秒,矩形 与 重叠部分的面积为 ,求 关

的函数关系式,并写出相应的 的取值范围.

A

D

B

E

O

C

F

x

y

y

(G)

(第26题)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


【005】如图1,在等腰梯形 中, , 是 的中点,过点 作 交 于点 . , .

(1)求点 到 的距离;

(2)点 为线段 上的一个动点,过 作 交 于点 ,过 作 交折线 于点 ,连结 ,设 .

①当点 在线段 上时(如图2), 的形状是否发生改变?若不变,求出 的周长;若改变,请说明理由;

②当点 在线段 上时(如图3),是否存在点 ,使 为等腰三角形?若存在,请求出所有满足要求的 的值;若不存在,请说明理由.

A

D

E

B

F

C

图4(备用)

A

D

E

B

F

C

图5(备用)

A

D

E

B

F

C

图1

图2

A

D

E

B

F

C

P

N

M

图3

A

D

E

B

F

C

P

N

M

(第25题)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


【006】如图13,二次函数 的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为 。

(1)求该二次函数的关系式;

(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;

(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【007】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),

点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.

    (1)求直线AC的解析式;

    (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);

    (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

        

【008】 如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD。

(1)       求证:BE=AD;

(2)       求证:AC是线段ED的垂直平分线;

(3)       △DBC是等腰三角形吗?并说明理由。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【009】一次函数 的图象分别与 轴、 轴交于点 ,与反比例函数 的图象相交于点 .过点 分别作 轴, 轴,垂足分别为 ;过点 分别作 轴, 轴,垂足分别为 与 交于点 ,连接 .

(1)若点 在反比例函数 的图象的同一分支上,如图1,试证明:

① ;

② .

(2)若点 分别在反比例函数 的图象的不同分支上,如图2,则 与 还相等吗?试证明你的结论.

O

C

F

M

D

E

N

K

y

x

(第25题图1)

O

C

D

K

F

E

N

y

x

M

(第25题图2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


【010】如图,抛物线 与 轴交于 两点,与 轴交于C点,且经过点 ,对称轴是直线 ,顶点是 .

(1)求抛物线对应的函数表达式;

(2)经过 两点作直线与 轴交于点 ,在抛物线上是否存在这样的点 ,使以点 为顶点的四边形为平行四边形?若存在,请求出点 的坐标;若不存在,请说明理由;

(3)设直线 与y轴的交点是 ,在线段 上任取一点 (不与 重合),经过 三点的圆交直线 于点 ,试判断 的形状,并说明理由;

(4)当 是直线 上任意一点时,(3)中的结论是否成立?(请直接写出结论).

O

B

x

y

A

M

C

1

(第26题图)

 

 

 

 

 

 

 

 

 

 

 

2010年中考数学压轴题100题精选(11-20题)

【011】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.

(1)求证:EG=CG;

(2)将图①中△BEF绕B点逆时针旋转45o,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.      

(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)

F

B

A

D

C

E

G

第24题图①

D

F

B

A

C

E

第24题图③

F

B

A

D

C

E

G

第24题图②

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【012】如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线与轴交于点,与直线交于点,且分别与圆相切于点和点.

(1)求抛物线的解析式;

(2)抛物线的对称轴交轴于点,连结,并延长交圆于,求的长.

(3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.

 

O

x

y

N

C

D

E

F

B

M

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

【013】如图,抛物线经过三点.

(1)求出抛物线的解析式;

(2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;

(3)在直线AC上方的抛物线上有一点D,使得的面积最大,求出点D的坐标.

O

x

y

A

B

C

4

 

1

 

 

(第26题图)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

【014】在平面直角坐标中,边长为2的正方形的两顶点、分别在轴、轴的正半轴上,点在原点.现将正方形绕点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点,边交轴于点(如图).

(1)求边在旋转过程中所扫过的面积;

(第26题)

O

A

B

C

M

N

(2)旋转过程中,当和平行时,求正方形

  旋转的度数;

(3)设的周长为,在旋转正方形

的过程中,值是否有变化?请证明你的结论.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【015】如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6.

⑴求二次函数的解析式;

⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;

⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【016】如图9,已知正比例函数和反比例函数的图象都经过点.

(1)求正比例函数和反比例函数的解析式;

(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;

(3)第(2)问中的一次函数的图象与轴、轴分别交于C、D,求过A、B、D三点的二次函数的解析式;

(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积与四边形OABD的面积S满足:?若存在,求点E的坐标;

若不存在,请说明理由.

y

x

O

C

D

B

A

3

3

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

【017】如图,已知抛物线经过,两点,顶点为.

(1)求抛物线的解析式;

(2)将绕点顺时针旋转90°后,点落到点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;

(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.

y

x

B

A

O

D

(第26题)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

【018】如图,抛物线经过、两点,与轴交于另一点.

(1)求抛物线的解析式;

(2)已知点在第一象限的抛物线上,求点关于直线对称的点的坐标;

(3)在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标.

y

x

O

A

B

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

【019】如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CF—EO|,再以CM、CO为边作矩形CMNO

(1)试比较EO、EC的大小,并说明理由

(2)令,请问m是否为定值?若是,请求出m的值;若不是,请说明理由

(3)在(2)的条件下,若CO=1,CE=,Q为AE上一点且QF=,抛物线y=mx2+bx+c经过C、Q两点,请求出此抛物线的解析式.

 (4)在(3)的条件下,若抛物线y=mx2+bx+c与线段AB交于点P,试问在直线BC上是否存在点K,使得以P、B、K为顶点的三角形与△AEF相似?若存在,请求直线KP与y轴的交点T的坐标?若不存在,请说明理由。

 

 

 

 

 

 

 

 

 

 

 

 

 

【020】如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF。

解答下列问题:

(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为         ,数量关系为         。

②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?

(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动。

试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由。(画图不写作法)

(3)若AC=4,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值。

 

 

 


 


       

2010年中考数学压轴题100题精选(21-30题)

【021】如图,点P是双曲线上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y= (0<k2<|k1|)于E、F两点.

(1)图1中,四边形PEOF的面积S1=    ▲    (用含k1、k2的式子表示);

(2)图2中,设P点坐标为(-4,3).

①判断EF与AB的位置关系,并证明你的结论;

②记,S2是否有最小值?若有,求出其最小值;若没有,请说明理由。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【022】一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC.

(1)若m为常数,求抛物线的解析式;

(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?

(3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得△BCD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【023】如图,在梯形中,点是的中点,是等边三角形.

(1)求证:梯形是等腰梯形;

(2)动点、分别在线段和上运动,且保持不变.设求与的函数关系式;

(3)在(2)中:①当动点、运动到何处时,以点、和点、、、中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当取最小值时,判断的形状,并说明理由.

A

D

C

B

中考数学压轴题精选 2010年中考数学压轴题100题精选(1-30)

P

M

Q

60°

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


【024】如图,已知为直角三角形,,,点、在轴上,点坐标为(,)(),线段与轴相交于点,以(1,0)为顶点的抛物线过点、.

(1)求点的坐标(用表示);

(2)求抛物线的解析式;

   

   

(3)设点为抛物线上点至点之间的一动点,连结并延长交于点,连结 并延长交于点,试证明:为定值.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【025】如图12,直线与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.

(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;

(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?

(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为,正方形OCMD与△AOB重叠部分的面积为S.试求S与的函数关系式并画出该函数的图象.

B

x

y

M

C

D

O

A

图12(1)

B

x

y

O

A

图12(2)

B

x

y

O

A

图12(3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【026】如图11,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH

(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH∶AC=2∶3

(1)延长HF交AB于G,求△AHG的面积.

(2)操作:固定△ABC,将直角梯形DEFH以每秒1个

单位的速度沿CB方向向右移动,直到点D与点B

重合时停止,设运动的时间为t秒,运动后的直角梯

形为DEFH′(如图12).

探究1:在运动中,四边形CDH′H能否为正方形?若能,

请求出此时t的值;若不能,请说明理由.

探究2:在运动过程中,△ABC与直角梯形DEFH′重叠

部分的面积为y,求y与t的函数关系.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【027】阅读材料:

         如图12-1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半.

     解答下列问题:

     如图12-2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.

(1)求抛物线和直线AB的解析式;

(2)点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及;

图12-2

x

C

O

y

A

B

D

1

1

(3)是否存在一点P,使S△PAB=S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【028】如图,已知抛物线与交于A(-1,0)、E(3,0)两点,与轴交于点B(0,3)。

(1)       求抛物线的解析式;

(2)       设抛物线顶点为D,求四边形AEDB的面积;

(3)       △AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【029】已知二次函数。

(1)求证:不论a为何实数,此函数图象与x轴总有两个交点。

(2)设a<0,当此函数图象与x轴的两个交点的距离为时,求出此二次函数的解析式。

(3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【030】如图,已知射线DE与轴和轴分别交于点和点.动点从点出发,以1个单位长度/秒的速度沿轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为秒.

(1)请用含的代数式分别表示出点C与点P的坐标;

(2)以点C为圆心、个单位长度为半径的与轴交于A、B两点(点A在点B的左侧),连接PA、PB.

O

x

y

E

P

D

A

B

M

C

①当与射线DE有公共点时,求的取值范围;

②当为等腰三角形时,求的值.

 

 

 

 

 

 

 

 

  

爱华网本文地址 » http://www.aihuau.com/a/418151/938972434771.html

更多阅读

广东中考数学压轴题 历届中考数学压轴题

随着中考考试的来临,做好每一道练习题是至关重要的。下面是小编网络整理的历届中考数学压轴题以供大家学习。历届中考数学压轴题以上就是小编分享的历届中考数学压轴题全部内容,相信这些对你会有用的。

声明:《中考数学压轴题精选 2010年中考数学压轴题100题精选(1-30)》为网友法海你不懂爱分享!如侵犯到您的合法权益请联系我们删除