欧拉公式 欧拉公式 欧拉公式-基本介绍,欧拉公式-公式介绍

欧拉公式是指以欧拉命名的诸多公式。其中最著名的有,复变函数中的欧拉幅角公式,即将复数、指数函数与三角函数联系起来。拓扑学中的欧拉多面体公式。初等数论中的欧拉函数公式。欧拉公式描述了简单多面体顶点数、面数、棱数特有的规律,它只适用于简单多面体。常用的欧拉公式有复数函数e^ix=cosx+isinx,三角公式d^2=R^2-2Rr ,物理学公式F=fe^ka等。

欧拉公式_欧拉公式 -基本介绍

(Euler公式)

在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做欧拉公式,分散在各个数学分支之中。

欧拉公式_欧拉公式 -公式介绍

复变函数

e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。


欧拉公式

e^ix=cosx+isinx的证明:

因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+……

cos x=1-x^2/2!+x^4/4!-x^6/6!……

sin x=x-x^3/3!+x^5/5!-x^7/7!……

在e^x的展开式中把x换成±ix.

(±i)^2=-1, (±i)^3=?i, (±i)^4=1 ……

e^±ix=1±ix/1!-x^2/2!?ix^3/3!+x^4/4!……

=(1-x^2/2!+……)±i(x-x^3/3!……)

所以e^±ix=cosx±isinx

将公式里的x换成-x,得到:

e^-ix=cosx-isinx,然后采用两式相加减的方法得到:

sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作π就得到:


恒等式

e^iπ+1=0.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式”

那么这个公式的证明就很简单了,利用上面的e^±ix=cosx±isinx。 那么这里的π就是x,那么

e^iπ=cosπ+isinπ

=-1

那么e^iπ+1=0

这个公式实际上是前面公式的一个应用。

分式

分式里的欧拉公式:

a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)

当r=0,1时式子的值为0

当r=2时值为1

当r=3时值为a+b+c

三角公式

三角形中的欧拉公式:

设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:

d^2=R^2-2Rr

拓扑学说

拓扑学里的欧拉公式:


拓扑学

V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。

如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。

X(P)叫做P的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。

初等数论

欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。

欧拉证明了下面这个式子:

如果n的标准素因子分解式是p1^a1*p2^a2*……*pm^am,其中众pj(j=1,2,……,m)都是素数,而且两两不等。则有

φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)

利用容斥原理可以证明它。

物理学


欧拉公式应用

众所周知,生活中处处存在着摩擦力,欧拉测算出了摩擦力与绳索缠绕在桩上圈数之间的关系。现将欧拉这个颇有价值的公式列在这里:

F=fe^ka

欧拉公式 欧拉公式 欧拉公式-基本介绍,欧拉公式-公式介绍

其中,f表示我们施加的力,F表示与其对抗的力,e为自然对数的底,k表示绳与桩之间的摩擦系数,a表示缠绕转角,即绳索缠绕形成的弧长与弧半径之比。

此外还有很多著名定理都以欧拉的名字命名。

欧拉公式_欧拉公式 -平面几何

设△ABC的外心为O,内心为I,外接圆半径为R,内切圆半径为r,又记外心、内心的距离OI为d,则有


欧拉公式

(1)式称为欧拉公式.

为了证明(1)式,我们现将它改成


欧拉公式

(2)式左边是点I对于⊙O的幂:过圆内任一点P的弦被P分成两个部分,这两个部分的乘积是一个定值,称为P关于⊙O的幂。事实上,如图3.21,如果将OI延长交圆于E、F,那么


欧拉公式

因此,设AI交⊙O于M,则


欧拉公式

因此,只需证明


欧拉公式

或写成比例式


欧拉公式

为了证明(5)式,应当寻找两个相似的三角形。一个以长IA、r为边;另一个以长2R、MI为边。前一个不难找,图3.21中的△IDA就是,D是内切圆与AC的切点。后一个也必须是直角三角形,所以一边是直径ML,另一个顶点也应当在圆上。△MBL就满足要求。

容易证明


欧拉公式
欧拉公式

因此(5)式成立,从而(1)式成立。


欧拉公式

因为

,所以由欧拉公式得出一个副产品,即


欧拉公式

欧拉公式_欧拉公式 -拓扑学

空间中的欧拉公式

V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。

如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。

X(P)叫做P的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。

在多面体中的运用:

简单多面体的顶点数V、面数F及棱数E间有关系


欧拉公式

这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。

平面上的欧拉公式


欧拉公式

其中V是图形P的顶点个数,F是图形P内的区域数,E是图形的边数。

在非简单多面体中,欧位公式的形式为:


欧拉公式

其中H指的是平面上不完整的个数,而C指的是独立的多面体的个数,G指的是多面体被贯穿的个数。

证明


欧拉公式

(1) 把多面体(图中①)看成表面是薄橡皮的中空立体。

(2) 去掉多面体的一个面,就可以完全拉开铺在平面上而得到一个平面中的直线形,像图中②的样子。假设F′,E′和V′分别表示这个平面图形的(简单)多边形、边和顶点的个数,我们只须证明F′-E′+V′=1。

(3) 对于这个平面图形,进行三角形分割,也就是说,对于还不是三角形的多边形陆续引进对角线,一直到成为一些三角形为止,像图中③的样子。每引进一条对角线,F′和E′各增加1,而V′却不变,所以F′-E′+V′不变。因此当完全分割成三角形的时候,F′-E′+V′的值仍然没有变。有些三角形有一边或两边在平面图形的边界上。

(4) 如果某一个三角形有一边在边界上,例如图④中的△ABC,去掉这个三角形的不属于其他三角形的边,即AC,这样也就去掉了△ABC。这样F′和E′各减去1而V′不变,所以F′-E′+V′也没有变。

(5) 如果某一个三角形有二边在边界上,例如图⑤中的△DEF,去掉这个三角形的不属于其他三角形的边,即DF和EF,这样就去掉△DEF。这样F′减去1,E′减去2,V′减去1,因此F′-E′+V′仍没有变。

(6) 这样继续进行,直到只剩下一个三角形为止,像图中⑥的样子。这时F′=1,E′=3,V′=3,因此F′-E′+V′=1-3+3=1。

(7) 因为原来图形是连在一起的,中间引进的各种变化也不破坏这事实,因此最后图形还是连在一起的,所以最后不会是分散在向外的几个三角形,像图中⑦那样。

(8) 如果最后是像图中⑧的样子,我们可以去掉其中的一个三角形,也就是去掉1个三角形,3个边和2个顶点。因此F′-E′+V′仍然没有变。

成立,于是欧拉公式:

得证。

欧拉公式_欧拉公式 -统计学


欧拉公式

特征函数用欧拉公式:随机变量X的特征函数定义为

  

爱华网本文地址 » http://www.aihuau.com/a/8103330103/59250.html

更多阅读

二、七桥问题和欧拉定理 欧拉旋转定理

问题2 七桥问题。关于一笔画,曾有一个颇为著名的哥尼斯堡七桥问题。事情发生在18世纪的哥尼斯堡,有一条河流从这个城市穿过,河中有两个小岛A、B,河上有七座桥连结两个小岛及河的两岸(参看图8-5),那里的居民在星期日有散步的习惯。有的人想,能

第欧根尼与小苏格拉底学派 前苏格拉底学派

第欧根尼与小苏格拉底学派刘良华比较有影响的“小苏格拉底学派”主要有犬儒学派(安提斯泰尼、第欧根尼创立)、居勒尼学派(阿里斯底波创立)和麦加拉学派(欧几里德创立)、斐多学派,等等。“小苏格拉底学派”在时间上与苏格拉底学派中的色

莱昂哈德·欧拉 莱昂哈德.欧拉

百科名片欧拉莱昂哈德·欧拉(Leonhard Euler ,1707年4月5日~1783年9月18日)是瑞士数学家和物理学家。他被一些数学史学者称为历史上最伟大的两位数学家之一(另一位是卡尔·弗里德里克·高斯)。欧拉是第一个使用“函数”一词来描述包

声明:《欧拉公式 欧拉公式 欧拉公式-基本介绍,欧拉公式-公式介绍》为网友黑色曼陀罗分享!如侵犯到您的合法权益请联系我们删除